×

All unitary ray representations of the conformal group SU(2,2) with positive energy. (English) Zbl 0352.22012


MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
22E70 Applications of Lie groups to the sciences; explicit representations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Mack, G., Abdus Salam: Ann. Phys. (N.Y.)53, 174 (1969)
[2] Segal, I.: MIT preprint
[3] Lüscher, M., Mack, G.: Commun. math. Phys.41, 203 (1975)
[4] Graev, M. L.: Dokl. Acad. Nauk SSR98, 517 (1954)
[5] Castell, L.: Nucl. Phys.B4, 343 (1967)
[6] Yao, T.: J. Math. Phys.8, 1931 (1967);9, 1615 (1968); · Zbl 0171.23902
[7] Sternheimer, D.: J. Math. Pure Appl.47, 289 (1969) and references cited in 1
[8] Rühl, W.: Commun. math. Phys.30, 287 (1973);34, 149 (1973); The canonical dimension of fields as the limit of noncanonical dimensions, preprint Kaiserslautern (March 1973) · Zbl 0257.22019
[9] Mack, G., Todorov, I.T.: J. Math. Phys.10, 2078 (1969) · Zbl 0183.29003
[10] Mack, G.: Osterwalder-Schrader positivity in conformal invariant quantum field theory. In: Lecture notes in physics, Vol. 37, (ed. H. Rollnik, K. Dietz), p. 66. Berlin-Heidelberg-New York: Springer 1975
[11] Mack, G.: Commun. math. Phys.53, 155 (1977); Nucl. Phys.B 118, 445 (1977)
[12] Dieudonné, I.: Treatise on analysis, Vol. III. New York: Academic Press 1972 · Zbl 0268.58001
[13] Hermann, R.: Lie groups for physicists, Chap. 6, 7. New York: W. A. Benjamin 1966 · Zbl 0135.06901
[14] Wigner, E.: Ann math.40, 149 (1939) · Zbl 0020.29601
[15] Joos, H.: Forschr. Physik10, 65 (1965); · Zbl 0131.44002
[16] Weinberg, S.: Phys. Rev.133, B 1318 (1964),134, B 882 (1964)
[17] Kihlberg, A., Müller, V.F., Halbwachs, F.: Commun. math. Phys.3, 194 (1966) · Zbl 0158.14202
[18] Warner, G.: Harmonic analysis on semi-simple Lie groups, Vols. I, II. Berlin-Heidelberg-New York: Springer 1972 · Zbl 0265.22021
[19] Wallach, N. R.: Harmonic analysis on homogeneous spaces. New York: Marcel Dekker 1973 · Zbl 0265.22022
[20] Rose, M. E.: Elementary theory of angular momentum, Appendix I. New York: John Wiley 1957 · Zbl 0079.20102
[21] Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. I. New York: Academic Press
[22] Koller, K.: Commun. math. Phys.40, 15 (1975) · Zbl 0306.22015
[23] Dobrev, V. K., Mack, G., Petkova, V. B., Petrova, S. G., Todorov, I. T.: Elementary representations and intertwining operators for the generalized Lorentz group. Lecture notes in physics, Vol. 63. Berlin-Heidelberg-New York: Springer 1977 · Zbl 0407.43010
[24] Kunze, R., Stein, E.: Amer. J. Math.82, 1 (1960);83, 723 (1961);89, 385 (1967) · Zbl 0156.37104
[25] Knapp, A., Stein, E.: Ann. Math.93, 489 (1971); · Zbl 0257.22015
[26] Schiffmann, G.: Bull. Soc. Math. France99, 3 (1971)
[27] Neumark, M. A.: Lineare Darstellungen der Lorentzgruppe, §8, Satz 2, p. 110. Berlin: VEB dt. Verlag der Wissenschaften 1963 · Zbl 0114.28703
[28] Nelson, E.: Analytic vectors, Ann. Math.70, 572 (1959) · Zbl 0091.10704
[29] Lüscher, M.: Analytic representations of simple Lie groups and their continuation to contractive representations of holomorphic Lie semi-groups, DESY 75/71 (1975)
[30] Ferrara, S., Gatto, R., Grillo, A.: Phys. Rev.D9, 3564 (1975);
[31] Zaikov, R. P.: Bulg. J. Phys.2, 2 (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.