×

Holomorphic curves and metrics of negative curvature. (English) Zbl 0352.32014


MSC:

32H25 Picard-type theorems and generalizations for several complex variables
32F45 Invariant metrics and pseudodistances in several complex variables
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ahlfors, L., An extension of Schwarz’s lemma, Trans. Amer. Math. Soc., 43, 359-364 (1938) · Zbl 0018.41002 · doi:10.2307/1990065
[2] Ahlfors, L., The theory of meromorphic curves, Finska Vetenskaps—Societeten, Helsingfors: Acta Soc. Sci. Fenn. Ser. A., 3, 3-31 (1941) · JFM 67.0275.01
[3] Bloch, A., Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Ecole Normale, 43, 309-362 (1926) · JFM 52.0326.01
[4] Borel, E., Sur les zéros des fonctions entières, Acta Math., 20, 357-396 (1896) · JFM 28.0360.01 · doi:10.1007/BF02418037
[5] Carlson, J., Some degeneracy theorems for entire functions with values in an algebraic variety, Trans. Amer. Math. Soc., 168, 273-302 (1972) · Zbl 0246.32023 · doi:10.2307/1996176
[6] Carlson, J.; Griffiths, P., A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math., 95, 557-584 (1972) · Zbl 0248.32018 · doi:10.2307/1970871
[7] Cartan, H., Differential Forms (1970), Paris: Paris, Boston: Hermann, Paris: Paris, Boston: H. Miflin Co., Paris: Paris, Boston: Hermann, Paris: Paris, Boston · Zbl 0213.37001
[8] Cartan, H., Sur les systèmes de fonctions holomorphes à variétés lacunaires et leurs applications, Ann. Ecole Normale, 45, 255-346 (1928) · JFM 54.0357.06
[9] Cartan, H., Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica (Cluj), 7, 5-31 (1933) · JFM 59.0327.03
[10] Chern, S. S., Holomorphic curves in the plane, Differential Geometry, in honor of K. Yano, 73-94 (1972), Tokyo: Kinokuniya, Tokyo · Zbl 0249.32016
[11] Dufresnoy, J., Théorie nouvelle des familles complexes normales, Ann. Ecole Normale, 61, 1-44 (1944) · Zbl 0061.15205
[12] Fujimoto, H., Families of holomorphic maps into projective space omitting some hyperplanes, J. Math. Soc. Japan, 25, 235-249 (1973) · Zbl 0253.32012 · doi:10.2969/jmsj/02520235
[13] Griffiths, P., Hermitian differential geometry, Chern classes, and positive vector bundles, Global Analysis (Papers in honor of K. Kodaira), 185-251 (1969), Tokyo: Univ. Tokyo Press, Tokyo · Zbl 0201.24001
[14] Griffiths, P.; King, J., Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130, 145-220 (1973) · Zbl 0258.32009 · doi:10.1007/BF02392265
[15] Green, M., Holomorphic maps into complex projective space omitting hyperplanes, Trans. Amer. Math. Soc., 169, 89-105 (1972) · Zbl 0256.32015 · doi:10.2307/1996232
[16] Greene, R.; Wu, H., Curvature and complex analysis I, II, III, resp. in Bull. Amer. Math. Soc., 77, 1045-1049 (1971) · Zbl 0225.32010
[17] Kiernan, P.; Kobayashi, S., Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J., 50, 199-215 (1973) · Zbl 0262.32010
[18] Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings (1970), New York: Marcel Dekker, New York · Zbl 0207.37902
[19] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions meromorphes (1929), Paris: Gauthier-Villars, Paris · JFM 55.0773.03
[20] Santaló Sors, L., Introduction to Integral Geometry (1953), Paris: Hermann, Paris · JFM 63.1236.03
[21] Weyl, H.; Weyl, J., Meromorphic Functions and Analytic Curves (1943), Princeton, New Jersey: Princeton University Press, Princeton, New Jersey · Zbl 0061.15302
[22] Wu, H., The Equidistribution Theory of Holomorphic Curves (1970), Princeton, New Jersey: Princeton University Press, Princeton, New Jersey · Zbl 0199.40901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.