×

zbMATH — the first resource for mathematics

A finite element method for some integral equations of the first kind. (English) Zbl 0352.45016

MSC:
45L05 Theoretical approximation of solutions to integral equations
49M15 Newton-type methods
45B05 Fredholm integral equations
47Gxx Integral, integro-differential, and pseudodifferential operators
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J40 Boundary value problems for higher-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anselone, P.M, Collectively compact operator approximation theory, (1971), Prentice Hall London · Zbl 0228.47001
[2] Atkinson, K.A, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, () · Zbl 0353.65069
[3] Aubin, J.P, Approximation of elliptic boundary-value problems, (1972), Wiley-Interscience New York
[4] Bramble, J; Schatz, A, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Commun. pure appl. math., 23, 653-675, (1970) · Zbl 0204.11102
[5] Brunner, H, The solution of Volterra integral equations of the first kind by piecewise polynomials, J. inst. math. appl., 12, 295-302, (1973) · Zbl 0271.65066
[6] \scS. Christiansen, Integral equations without a unique solution can be made useful for solving some plane harmonic problems, J. Inst. Math. Appl., to appear. · Zbl 0309.45001
[7] Christiansen, S; Rasmussen, H, Numerical solution for two-dimensional annular electrochemical machining problems, ()
[8] Courant, R; Hilbert, D, ()
[9] Cyrlin, L.E; Cyrlin, L.E, On a method of solving integral equations of the first kind in potential theory problems, Z. vycisl. mat. i mat. fiz., USSR comput. phys., 9, 324-328, (1969), translated in · Zbl 0181.19004
[10] Fichera, G, Linear elliptic equations of higher order in two independent variables and singular integral equations, () · Zbl 0111.29602
[11] Gilbert, R.P; Hsiao, G.C; Gilbert, R.P; Hsiao, G.C, On Dirichlet’s problem for quasilinear elliptic equations, (), 184-236 · Zbl 0338.35057
[12] Howland, J, Symmetrizing kernels and the integral equations of first kind of classical potential theory, (), 1-7 · Zbl 0164.42004
[13] Howland, J.L; Vaillancourt, R, Series expansions of induced potentials, J. math. anal. appl., 16, 385-395, (1966) · Zbl 0167.40202
[14] Hsiao, G.C; MacCamy, R.C, Solution of boundary value problems by integral equations of the first kind, SIAM rev., 15, 687-705, (1973) · Zbl 0235.45006
[15] Jaswon, M.A, Integral equation methods in potential theory I, (), 23-32 · Zbl 0112.33103
[16] Jaswon, M.A; Maiti, M; Symm, G.T, Numerical biharmonic analysis and some applications, Int. J. solids struct., 3, 309-322, (1967) · Zbl 0148.19403
[17] Kammerer, W.J; Nashed, M.Z, Iterative methods for best approximate solutions of linear integral equations of the first and second kinds, J. math. anal. appl., 40, 547-574, (1972) · Zbl 0246.45015
[18] Landweber, L, An iteration formula for Fredholm integral equations of the first kind, Amer. J. math. LXXIII, 615-624, (1951) · Zbl 0043.10602
[19] Le Roux, M.N, Résolution numérique du problème du potential dans le plan par une méthode variationelle d’éléments finis, Thèse, L’université de Rennes, Série A, no. D’ordre 347, no. de série 38, (1974)
[20] Le Roux, M.N, Équations intégrales pour le problème du potential électrique dans le plan, C. R. acad. sc., ser. A, 278, (1974)
[21] \scM. N. Le Roux, Méthode d’élément finis pour la résolution numérique de problèmes extérieurs en dimansion deux, to appear in R.A.I.R.O. · Zbl 0382.65055
[22] Lions, J.L; Magenes, E, ()
[23] MacCamy, R.C, On singular integral equations with logarithmic or Cauchy kernels, J. math. mech., 7, 355-376, (1958) · Zbl 0084.32201
[24] Muskhelishvili, N.L, Singular integral equations, (1953), Noordhoff Groningen, The Netherlands
[25] Nashed, M.Z; Nashed, M.Z, Approximate regularized solutions to improperly posed linear integral and operator equations, (), 289-332 · Zbl 0647.47013
[26] \scJ. C. Nedelec, Méthodes d’éléments finis courbés pour la résolution des équations intégrais singulières sur des surfaces de R3. 1-31, to appear in R.A.I.R.O.
[27] Nedelec, J.C; Planchard, J, Une méthode variationelle d’éléments finis pour la résolution numérique d’un problème extérieurs dans R3, Revue française d’automatique, informatique et recherche opérationnelle, no., 105-129, (décembre 1973), R3
[28] Nitsche, J, Verfahren von Ritz und spline-interpolation bei Sturm-Liouville-randwertproblemen, Numer. math., 13, 260-265, (1969) · Zbl 0181.18204
[29] Nitsche, J, Umkehrsätze für spline-approximationen, Composition math., 21, 400-416, (1969) · Zbl 0199.39302
[30] Nitsche, J, Zur konvergenz von Näherungsverfahren bezüglich verschiedener normen, Numer. math., 15, 224-228, (1970) · Zbl 0221.65092
[31] Noble, Ben, Error analysis of colocation methods for solving Fredholm integral equations, () · Zbl 0311.65068
[32] \scBen Noble, A bibliography on “Methods for Solving Integral Equations,” University of Wisconsin, Madison. · Zbl 0311.65068
[33] Schmeidler, W, Integralgleichungen mit anwendungen in physik und technik I, (1950), AVG Leipzig · Zbl 0035.34901
[34] Seeley, R, Topics in pseudo differential operators, (), 169-305
[35] \scH. Siddalingaiah, A constructive solution of the induced potential problem, SIAM J. Math. Anal, to appear.
[36] Stakgold, I, Boundary value problems of mathematical physics II, (1968), Macmillan New York · Zbl 0165.36803
[37] Symm, G.T, Integral equation methods in potential theory II, (), 33-46 · Zbl 0112.33201
[38] Symm, G.T, An integral equation method in conformal mapping, Numer. math., 9, 250-258, (1966) · Zbl 0156.16901
[39] Taylor, A.E, Functional analysis, (1958), Wiley New York
[40] Triebel, H, Höhere analysis, (1972), Deutscher Verlag d. Wiss Berlin · Zbl 0257.47001
[41] Warschawski, S.E, On the solution of the lichtenstein-gershgorin integral equation in conformal mapping: I theory, Nat. bur. stand. appl. math. ser., 42, 7-29, (1955)
[42] Wendland, W, Bemerkungen über die fredholmschen Sätze, Methoden und verf. der math. physik 3, 141-176, (1970), B. I. Mannheim 722 · Zbl 0211.16704
[43] Wendland, W; Wendland, W, An integral equation method for generalized analytic functions, (), 414-452
[44] Werner, H; Schaback, R, Praktische Mathematik II, (1972), Springer Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.