×

zbMATH — the first resource for mathematics

Interposition and lattice cones of functions. (English) Zbl 0352.46011

MSC:
46E05 Lattices of continuous, differentiable or analytic functions
54E05 Proximity structures and generalizations
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
06F30 Ordered topological structures (aspects of ordered structures)
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jörg Blatter, Grothendieck spaces in approximation theory, American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 120. · Zbl 0236.46027
[2] J. Blatter and G. L. Seever, Interposition of semi-continuous functions by continuous functions, Analyse fonctionnelle et applications (Comptes Rendus Colloq. d’Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), Hermann, Paris, 1975, pp. 27 – 51. Actualités Sci. Indust., No. 1367. · Zbl 0318.54009
[3] J. Blatter and G. L. Seever, Inclusions, interposition and approximation, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 257 – 261. · Zbl 0329.41020
[4] -, Quasi-proximities and order compactifications, Notices Amer. Math. Soc. 20 (1973), A-594. Abstract #73T-G122.
[5] A. Calder, Proximity algebras, Carleton Math. Ser., no. 44, Carleton University, Ottawa, Canada. · Zbl 0229.54029
[6] Ákos Császár, Foundations of general topology, A Pergamon Press Book, The Macmillan Co., New York, 1963. · Zbl 0108.35304
[7] C. H. Dowker, On countably paracompact spaces, Canadian J. Math. 3 (1951), 219 – 224. · Zbl 0042.41007
[8] V. A. Efremovič, Infinitesimal spaces, Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 341 – 343 (Russian). · Zbl 0042.16703
[9] V. A. Efremovič, The geometry of proximity. I, Mat. Sbornik N. S. 31(73) (1952), 189 – 200 (Russian).
[10] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85 – 91. · Zbl 0045.25704
[11] M. Katětov, Correction to ”On real-valued functions in topological spaces” (Fund. Math. 38 (1951), pp. 85 – 91), Fund. Math. 40 (1953), 203 – 205. · Zbl 0045.25704
[12] B. R. Kripke and R. B. Holmes, Approximation of bounded functions by continuous functions, Bull. Amer. Math. Soc. 71 (1965), 896 – 897. · Zbl 0154.14901
[13] Bernard Kripke and Richard Holmes, Interposition and approximation, Pacific J. Math. 24 (1968), 103 – 110. · Zbl 0155.10901
[14] Ernest Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361 – 382. · Zbl 0071.15902 · doi:10.2307/1969615 · doi.org
[15] Leopoldo Nachbin, Topology and order, Translated from the Portuguese by Lulu Bechtolsheim. Van Nostrand Mathematical Studies, No. 4, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. · Zbl 0131.37903
[16] A. Pełczyński, A generalisation of Stone’s theorem on approximation, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 105 – 107, X (English, with Russian summary). · Zbl 0078.10404
[17] William J. Pervin, Quasi-proximities for topological spaces, Math. Ann. 150 (1963), 325 – 326. · Zbl 0112.37505 · doi:10.1007/BF01470761 · doi.org
[18] F. Riesz, Stetigskeitsbegriff und abstrakte Mengenlehre, Atti del IV Congresso Intern. dei Matem., Roma, 1908, v. 11, Rome, 1909, pp. 18-24.
[19] Yu. Smirnov, On proximity spaces in the sense of V. A. Efremovič, Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 895 – 898 (Russian). · Zbl 0046.16304
[20] Yu. M. Smirnov, On proximity spaces, Mat. Sbornik N.S. 31(73) (1952), 543 – 574 (Russian).
[21] Eugene F. Steiner, The relation between quasi-proximities and topological spaces, Math. Ann. 155 (1964), 194 – 195. · Zbl 0117.39801 · doi:10.1007/BF01344159 · doi.org
[22] M. H. Stone, Boundedness properties in function-lattices, Canadian J. Math. 1 (1949), 176 – 186. · Zbl 0032.16901
[23] H. Tong, Some characterizations of normal and perfectly normal spaces, Bull. Amer. Math. Soc. 54 (1948), 65.
[24] Hing Tong, Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952), 289 – 292. · Zbl 0046.16203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.