×

On algebras of pseudodifferential operators in \(L^p(\mathbb{R}^n)\). (English) Zbl 0352.47021


MSC:

47Gxx Integral, integro-differential, and pseudodifferential operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47A53 (Semi-) Fredholm operators; index theories
35S99 Pseudodifferential operators and other generalizations of partial differential operators
42A45 Multipliers in one variable harmonic analysis
47L10 Algebras of operators on Banach spaces and other topological linear spaces
46H20 Structure, classification of topological algebras
42B25 Maximal functions, Littlewood-Paley theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Breuer M., Journal of Math. and Mech. 13 pp 313– (1964)
[2] DOI: 10.1073/pnas.69.5.1185 · Zbl 0244.35074
[3] DOI: 10.2307/2373478 · Zbl 0169.47105
[4] DOI: 10.1016/0022-1236(75)90020-8 · Zbl 0306.47024
[5] DOI: 10.1080/00036817208839032 · Zbl 0244.46080
[6] Cordes H.O., Lund 1970/71 (unpublished)
[7] Dixmier J., Les C* - algebres et leurs representations (1964)
[8] DOI: 10.1007/BF01354579 · Zbl 0242.45003
[9] Herman E.A., Journal Math. Mech. 15 pp 147– (1966)
[10] DOI: 10.1007/BF02547187 · Zbl 0093.11402
[11] Hörmander L., in Singular Integrals, Proc. of Symp. in Pure Math 10 pp 138– (1967)
[12] Illner R., Proc. of the AMS 51 pp 347– (1975)
[13] Mihlin S.G., Multidimensional Singular Integrals and Integral Equations (1965)
[14] DOI: 10.3792/pja/1195519430 · Zbl 0272.47031
[15] Rickart C.E., General Theory of Banach Algebras (1960) · Zbl 0095.09702
[16] DOI: 10.1090/S0002-9947-1971-0415430-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.