×

Doubly-connected minimal surfaces. (English) Zbl 0352.53005


MSC:

53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alexander, H., & R. Osserman, Area bounds for various classes of surfaces. Amer. J. Math. (to appear). · Zbl 0326.53030
[2] Alexander, H., D. Hoffman, & R. Osserman, Area estimates for submanifolds of euclidean space, INDAM Symposia Mathematica. XIV, 445-455. ?monograf?, Bologna, 1974. · Zbl 0326.53029
[3] Bailyn, P.M., Doubly-connected minimal surfaces. Trans. Amer. Math. Soc. 128, 206-220 (1967) · Zbl 0168.42305
[4] Bliss, G.A., Calculus of Variations. Open Court, La Salle, Illinois, 1925. · JFM 51.0372.01
[5] Gulliver, R., R. Osserman, O. Royden, A theory of branched immersions of surfaces. Amer. J. Math. 95, 750-812 (1973). · Zbl 0295.53002
[6] Hildebrandt, S., Maximum principles for minimal surfaces and for surfaces of continuous mean Curvature. Math. Z. 128, 157-173 (1972). · Zbl 0253.53005
[7] Kaul, H., Isoperimetrische Ungleichung und Gauss-Bonnet Formel für H-Flächen in RiemannSchen Mannigfaltigkeiten. Arch. Rational Mech. Anal. 45, 194-221 (1972) · Zbl 0234.53054
[8] Kaul, H., Remarks on the isoperimetric inequality for multiply-connected H-surfaces. Math. Z. 128, 271-276 (1972) · Zbl 0242.53001
[9] Nitsche, J.C.C., A necessary criterion for the existence of certain minimal surfaces. J. Math. Mech. 13, 659-666 (1964) · Zbl 0168.42304
[10] Nitsche, J.C.C., A supplement to the conditions of J. Douglas. Rend. Circ. Mat. Palermo 13, 192-198 (1964) · Zbl 0136.16702
[11] Nitsche, J.C.C., The isoperimetric inequality for multiply-connected minimal surfaces. Math. Ann. 160, 370-375 (1965) · Zbl 0144.20505
[12] Nitsche, J.C.C., Note on the nonexistence of minimal surfaces. Proc. Amer. Math. Soc. 19, 1303-1305 (1968) · Zbl 0167.11402
[13] Nitsche, J.C.C., & J. Leavitt, Numerical estimates for minimal surfaces. Math. Ann. 180, 170-174 (1969) · Zbl 0164.52203
[14] Osserman, R., A Survey of Minimal Surfaces. Van Nostrand-Reinhold, New York, 1969. · Zbl 0209.52901
[15] Osserman, R., Isoperimetric and related inequalities. Proc. 20th A.M.S. Summer Math. Inst., held at Stanford, Calif., August 1973 (to apear).
[16] Osserman, R., Variations on a theme of Plateau. pp. 65-74 of Global Analysis and Its Applications, III; Lectures Presented at Centre for Theoretical Physics, Trieste, 4 July?25 August 1972. International Atomic Energy Agency, Vienna, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.