×

zbMATH — the first resource for mathematics

Le cylindre des langages linéaires. (French) Zbl 0352.68087

MSC:
68Q45 Formal languages and automata
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. M. Autebert, Le Cylindre des Langages à Compteur,à paraitre. · Zbl 0351.68026
[2] L. Boasson, Langages algèbriques, paires itérantes et transductions rationnelles,T.C.S. 2 (1976), 209–223. · Zbl 0378.68037 · doi:10.1016/0304-3975(76)90033-5
[3] L. Boasson etM. Nivat, Sur diverses familles de langages fermées par transductions rationnelles,Acta Informatica 2 (1973), 180–188. · Zbl 0242.68037
[4] S. Ginsburg, TheMathematical Theory of Context-Free Languages, McGraw-Hill, 1966. · Zbl 0184.28401
[5] S. Ginsburg, J. Goldstine andS. Greibach, Uniformly erasable AFL,J.C.S.S. 10 (1975), 165–182.
[6] S. Greibach, The hardest context-free language,SIAM J. Computing 2 (1973), 304–310. · Zbl 0278.68073 · doi:10.1137/0202025
[7] S. Greibach, Jump Pda’s and hierarchies of deterministic context-free languages,SIAM J. Computing 3 (1974), 111–127. · Zbl 0288.68031 · doi:10.1137/0203009
[8] W. Ogden, A helpful result for proving inherent ambiguity,Math. System Theory 2 (1967), 191–194. · Zbl 0175.27802 · doi:10.1007/BF01694004
[9] I. H. Sudborough, A note on tape-bounded complexity classes and linear context-free languages,Journal of A.C.M. 22 (1975), 499–500. · Zbl 0318.68048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.