Cunningham, W. H. A network simplex method. (English) Zbl 0352.90039 Math. Program. 11, 105-116 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 46 Documents MSC: 90C10 Integer programming 90C05 Linear programming 90C35 Programming involving graphs or networks PDF BibTeX XML Cite \textit{W. H. Cunningham}, Math. Program. 11, 105--116 (1976; Zbl 0352.90039) Full Text: DOI OpenURL References: [1] G.B. Dantzig, ”Application of the simplex method to a transportation problem”, in: T.C. Koopmans, ed.,Activity analysis of production and allocation (Wiley, New York, 1951). · Zbl 0045.09901 [2] G.B. Dantzig,Linear programming and extensions (Princeton University Press, Princeton, 1963). [3] G.B. Dantzig, L.R. Ford, Jr., and D.R. Fulkerson, ”A primal-dual algorithm for linear programs”, in: H.W. Kuhn and A.W. Tucker, eds.,Linear inequalities and related systems, Annals of Mathematics Study 38 (Princeton University Press, Princeton, 1956). · Zbl 0072.37701 [4] Jack Edmonds, ”Exponential growth of the simplex method for shortest path problems”, University of Waterloo, (1970) unpublished. [5] L.R. Ford, Jr. and D.R. Fulkerson,Flows in networks (Princeton University Press, Princeton, 1962). · Zbl 0106.34802 [6] D.R. Fulkerson and G.B. Dantzig, ”Computations of maximal flows in networks”,Naval Research Logistics Quarterly 2 (1955) 277–283. [7] D. Gale, ”A theorem on flows in networks”,Pacific Journal of Mathematics 7 (1957) 1073–1082. · Zbl 0087.16303 [8] B.J. Gassner, ”Cycling in the transportation problem”,Naval Research Logistics Quarterly 11 (1964) 43–58. · Zbl 0127.36905 [9] Fred Glover, D. Karney, and D. Klingman, ”The augmented predecessor index method for locating stepping-stone paths and assigning dual prices in distribution problems”,Transportation Science 6 (1972) 171–179. [10] Ellis Johnson, ”Networks and basic solutions”,Operations Research 14 (1966) 619–623. [11] Alex Orden, ”The transshipment problem”,Management Science 2 (1956) 276–285. · Zbl 0995.90549 [12] Norman Zadeh, ”A bad network problem for the simplex method and other minimum cost flow algorithms”,Mathematical Programming 5 (1973) 255–266. · Zbl 0287.90030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.