×

zbMATH — the first resource for mathematics

Computational experiences with the exchange method. Applied to four commonly used partitioning cluster analysis criteria. (English) Zbl 0353.65004

MSC:
65D10 Numerical smoothing, curve fitting
68T10 Pattern recognition, speech recognition
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderberg, M.R., ()
[2] Armour, G.C.; Buffa, E.S., A heuristic algorithm and simulation approach to relative location of facilities, Management sci., 9, 294-309, (1963)
[3] Bijnen, E.J., ()
[4] Bock, H.H., ()
[5] Burkard, R.E., Heuristische verfahren zur Lösung quadratischer zuordnungsprobleme, Z. operations res., 19, 183-193, (1975) · Zbl 0311.90054
[6] Cooper, L., Location-allocation problems, Operations res., 11, 331-343, (1963) · Zbl 0113.14201
[7] Cooper, L., Heuristic methods for location-allocation problems, SIAM rev., 6, 37-63, (1964) · Zbl 0956.90014
[8] Domschke, W., Modelle und verfahren zur bestimmung betrieblicher und innerbetrieblicher standorte — ein überblick, Z. operations res., 19(B), 13-41, (1975) · Zbl 0311.90017
[9] Duda, O.; Hart, P.E., ()
[10] Duran, B.S.; Odell, P.L., ()
[11] Everitt, B., ()
[12] Francis, R.L.; White, J.A., ()
[13] Friedmann, H.P.; Rugin, J., On some invariant criteria for grouping data, J. am. statist. assoc., 62, 1159-1178, (1967)
[14] Fukunaga, K.; Koonth, W.L.G., A criterion and an algorithm for grouping data, IEEE trans. computers, 19, 917-923, (1970) · Zbl 0206.48002
[15] Ilanan, M., On Steiner’s problem with rectilinear distance, SIAM J. appl. math., 14, 255-265, (1966) · Zbl 0151.33205
[16] L. Hannsson, Remark on algorithm 266-pseudo-random-generator, Collected Algorithms of the Communications of the ACM.
[17] Howard, R.N., Classifying a population into homogeneous groups, ()
[18] Jensen, R.E., A dynamic programming algorithm for cluster analysis, J. operations res. soc. am., 7, 1034-1057, (1969) · Zbl 0183.49103
[19] Kiehne, R., ()
[20] Koonth, W.L.G.; Narenda, P.M.; Fukunaga, K., A branch and bound clustering algorithm, IEEE trans. computers, 24, 908-915, (1975) · Zbl 0308.68039
[21] Kuenne, R.E.; Soland, R.M., Exact and approximate solutions to the multisource Weber problem, Math. programming, 3, 193-209, (1972) · Zbl 0245.90021
[22] Kuhn, H.W., A note on Fermat’s problem, Math. programming, 4, 98-107, (1973) · Zbl 0255.90063
[23] MacQueen, J., Some methods for classification and analysis of multivariate observations, (), 281-297 · Zbl 0214.46201
[24] Maranzana, F.E., On the location of supply points to minimize transportation costs, IBM systems J., 129-136, (1963)
[25] Marriot, F.H.C., Practical problems in a method of cluster analysis, Biometrics, 27, 501-514, (1971)
[26] McRae, D.J., MIKCA: A Fortran IV iterative K-means cluster analysis program, Behav. sci., 16, 423-424, (1971)
[27] Morrison, D.G., Measurement problems in cluster analysis, Management sci., 13, 775-780, (1967)
[28] Rao, M.R., Cluster analysis and mathematical programming, J. am. statist. assoc., 66, 622-626, (1971) · Zbl 0238.90042
[29] Scott, A.J.; Simons, M.J., Clustering methods based on likelihood ratio criteria, Biometrics, 27, 387-397, (1971)
[30] Späth, H., Algorithmen für multivariable ausgleichsmodelle, (1974), Oldenbourg München · Zbl 0327.65016
[31] Späth, H., ()
[32] Späth, H., Algorithm: L1 cluster analysis, Computing, 16, 379-387, (1976) · Zbl 0322.65008
[33] Späth, H., Numerische erfahrungen zu heuritischen Lösungsverfaliren beim varianzkriterium in der cluster-analyse, Z. angew. informatik, (1976), to appear
[34] Soarks, D.N., Euclidean cluster analysis, Appl. statist., 22, 126-130, (1973)
[35] Streim, H., Heuristische Lösungsverfahren — versuch einer begriffsklärung, Z. operations res., 19, 143-162, (1975) · Zbl 0311.90040
[36] Vergin, R.C.; Rogers, J.D., An algorithm and computational procedure for locating ecouimic facilities, Management sci., 13(B), 240-254, (1967)
[37] Vinod, H.D., Integer programming and the theory of grouping, J. am. statist. assoc., 64, 506-519, (1969) · Zbl 0272.90050
[38] Weiszfeld, K., Sur le point pour lequel la somme des distances de n points données est minimum, Tohoku math. J., 43, 335-386, (1937) · Zbl 0017.18007
[39] Wesolowsky, G.O.; Love, R.F., The optimal location of new facilities using rectangular distances, Operations res., 19, 124-130, (1971) · Zbl 0216.54102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.