×

zbMATH — the first resource for mathematics

Higher order local accuracy by averaging in the finite element method. (English) Zbl 0353.65064

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ivo Babuška, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1972/73), 179 – 192. · Zbl 0258.65108 · doi:10.1007/BF01436561 · doi.org
[2] James H. Bramble, A survey of some finite element methods proposed for treating the Dirichlet problem, Advances in Math. 16 (1975), 187 – 196. · Zbl 0346.49031 · doi:10.1016/0001-8708(75)90150-4 · doi.org
[3] J. H. Bramble and S. R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation, Numer. Math. 16 (1970/1971), 362 – 369. · Zbl 0214.41405 · doi:10.1007/BF02165007 · doi.org
[4] James H. Bramble, Joachim A. Nitsche, and Alfred H. Schatz, Maximum-norm interior estimates for Ritz-Galerkin methods, Math. Comput. 29 (1975), 677 – 688. · Zbl 0316.65023
[5] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525 – 549. · Zbl 0305.65064
[6] J. H. Bramble and A. H. Schatz, Estimates for spline projections, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. \jname RAIRO Analyse Numérique 10 (1976), no. R-2, 5 – 37. · Zbl 0343.65045
[7] J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 1 – 14. Publication No. 33.
[8] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809 – 820. · Zbl 0226.65073
[9] Carl de Boor and Blâir Swartz, Collocation at Gaussian points, SIAM J. Numer. Anal. 10 (1973), 582 – 606. · Zbl 0232.65065 · doi:10.1137/0710052 · doi.org
[10] Jim Douglas Jr. and Todd Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 89 – 92.
[11] Jim Douglas Jr., Todd Dupont, and Mary Fanett Wheeler, Some superconvergence results for an \?\textonesuperior -Galerkin procedure for the heat equation, Computing methods in applied sciences and engineering (Proc. Internat. Sympos., Versailles, 1973) Springer, Berlin, 1974, pp. 288 – 311. Lecture Notes in Comput. Sci., Vol. 10.
[12] Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. · Zbl 0224.35002
[13] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth; Die Grundlehren der mathematischen Wissenschaften, Band 181. · Zbl 0223.35039
[14] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9 – 15 (German). Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. · Zbl 0229.65079 · doi:10.1007/BF02995904 · doi.org
[15] Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937 – 958. · Zbl 0298.65071
[16] I. J. SCHOENBERG, ”Contributions to the problem of approximation of equidistant data by analytic functions,” Parts A, B, Quart. Appl. Math., v. 4, 1946, pp. 45-99, 112-141. MR 7, 487; 8, 55.
[17] Vidar Thomée, Spline approximation and difference schemes for the heat equation, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 711 – 746.
[18] Vidar Thomée and Burton Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal. 11 (1974), 1059 – 1068. · Zbl 0292.65052 · doi:10.1137/0711081 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.