×

zbMATH — the first resource for mathematics

On non-additive measures of inaccuracy. (English) Zbl 0353.94021

MSC:
94A15 Information theory (general)
62B99 Sufficiency and information
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Aczel J.: Lectures on Functional Equations and Their Applications. Academic Press, 1966. · Zbl 0139.09301
[2] Daroćzy Z.: Generalized Information Functions. Information and Control, 16 (1970), 36-51. · Zbl 0205.46901
[3] Gallager R. G.: Information Theory and Reliable Communications. John Wiley and Sons, Inc. New York, 1968, pp. 523. · Zbl 0198.52201
[4] Havrda J. F. Charvát: Quantification Method of Classification Process. The concept of structural a - entropy. Kybernetika 3 (1967), 30-35. · Zbl 0178.22401
[5] Hardy G. H. J. E. Littlewood G. Pólya: Inequalities. Cambridge University Press, 1964. · Zbl 0634.26008
[6] Kerridge D. F.: Inaccuracy and Inference. J. R. Statist. Soc., series B 23 (1961), 184-194. · Zbl 0112.10302
[7] Rényi A.: On Measures of Entropy and Information. Proc. Fourth Berkeley Symp. on Math. Stat. and Probability, University of California Press, (1960), 547-561.
[8] Sharma B. D.: A Mean Value Study of Quantities in Information Theory. Ph. D. Thesis, Delhi University, 1970.
[9] Sharma B. D. D. P. Mittal: New Non-additive Measures of Entropy for Discrete Probability Distributions. Journal of Mathematical Sciences, Vol. 10 (1975), 28 - 40.
[10] Sharma B. D. I. J. Taneja: Entropy of Type (\(\alpha\), \(\beta\)) and Other Generalized Measures in Information Theory. METRIKA, Vol. 22 (1975), 205-215. · Zbl 0328.94012
[11] Sharma B. D., Ram Autar: On Characterization of a Generalized Inaccuracy Measure in Information Theory. Journal of Applied Probability, Vol. 10 (1973), 464-468. · Zbl 0261.94024
[12] Shannon C. E.: A Mathematical Theory of Communication. Bell System Tech. Journal, 27 (1948), 379-423. · Zbl 1154.94303
[13] Vajda I.: Axioms for a - entropy of a Generalized Probability Scheme. Kybernetika 2 (1968), 105-112. · Zbl 0193.48201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.