zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Negatively invariant sets of compact maps and an extension of a theorem of Cartwright. (English) Zbl 0354.34072

34K99Functional-differential equations
34C25Periodic solutions of ODE
35K55Nonlinear parabolic equations
54C10Special maps on topological spaces
Full Text: DOI
[1] Besicovitch, A. S.: Almost periodic functions. (1954) · Zbl 0065.07102
[2] Cartwright, M. L.: Corrigenda. Proc. London math. Soc. 17, 768 (1967)
[3] Cartwright, M. L.: Almost periodic differential equations and almost periodic flows. J. differential eqs. 5, 167-181 (1962) · Zbl 0167.07804
[4] Foias, C.; Prodi, G.: Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. sem. Mat. Padova 3, 1-34 (1967) · Zbl 0176.54103
[5] Hale, J. K.: Functional differential equations. (1971) · Zbl 0222.34003
[6] Hurewicz, W.; Wallman, H.: Dimension theory. (1948) · Zbl 0036.12501
[7] Kurzweil, J.: On solutions of nonautonomous linear delayed differential equations which are defined and exponentially bounded for t $\to $- \infty. Casopis pěst. Mat. 96, 229-238 (1971) · Zbl 0218.34065
[8] Kurzweil, J.: On a system of operator equations. J. differential eqs. 11, 364-375 (1972) · Zbl 0211.17701
[9] Kurzweil, J.: Solutions of linear nonautonomous functional differential equations which are exponentially bounded for t $\to $- \infty. J. differential eqs. 11, 376-384 (1972) · Zbl 0211.17702
[10] J. Kurzweil, Small delays don’t matter, in ”Symposium on Differential Equations and Dynamical Systems,” Springer-Verlag Lecture Notes 206, pp. 47--49, Springer-Verlag, New York.
[11] Ladyzhenskaya, O. A.: Dynamical systems generated by the Navier-Stokes equations. Soviet physics (Doklady) 17, 647-649 (1973) · Zbl 0301.35077
[12] Oliva, W. M.: Functional differential equations on compact manifolds and an approximation theorem. J. differential eqs. 5, 483-496 (1969) · Zbl 0174.19902
[13] Oliva, W. M.: Functional differential equations--generic theory. Proc. internat. Symp. on dynamical systems, Brown university (1975) · Zbl 0353.34077
[14] J. Ruiz-Claeyssen, Effect of delays on functional differential equations, J. Differential Eqs., submitted. · Zbl 0345.34052
[15] Sell, G.: Lectures on topological dynamics and ordinary differential equations. (1971) · Zbl 0212.29202
[16] Yorke, J.: Non-continuable solutions of differential-delay equations. Proc. amer. Math. soc. 21, 648-652 (1969) · Zbl 0184.12302