×

zbMATH — the first resource for mathematics

Some examples of singularities in a free boundary. (English) Zbl 0354.35033

MSC:
35J20 Variational methods for second-order elliptic equations
49Q05 Minimal surfaces and optimization
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] H. Brézis - D. Kinderlehrer , The smoothness of solutions to non-linear variational inequalities , Indiana Math. J. , 23 ( 1974 ), pp. 831 - 844 . MR 361436 | Zbl 0278.49011 · Zbl 0278.49011
[2] H. Brézis , Opérateurs Maximaux Monotones , North Holland , Amsterdam , 1973 . · Zbl 0252.47055
[3] L. Caffarelli - N. Rivière , Smoothness and analyticity of free boundaries in variational inequalities , Ann. Scuola Norm. Sup. Pisa , ( 4 ), 3 ( 1967 ), pp. 289 - 310 . Numdam | MR 412940 | Zbl 0363.35009 · Zbl 0363.35009
[4] D. Kinderlehrer , The free boundary determined by the solution to a differential equation , Indiana Math. J. , 25 ( 1976 ), pp. 195 - 208 . MR 393807 | Zbl 0336.35031 · Zbl 0336.35031
[5] H. Lewy - G. Stampacchia , On the regularity of the solution of a variational inequality , Comm. Pure Appl. Math. , 22 ( 1969 ), pp. 155 - 188 . MR 247551 | Zbl 0167.11501 · Zbl 0167.11501
[6] B. Malgrange , Ideals of Differentiable Functions , Oxford University Press , London , 1965 . MR 212575 | Zbl 0177.17902 · Zbl 0177.17902
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.