Mesures stochastiques à valeurs dans des espaces \(L_0\). (French) Zbl 0354.60004


60B05 Probability measures on topological spaces
60H05 Stochastic integrals
28A25 Integration with respect to measures and other set functions
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
Full Text: DOI


[1] Bartle, R.G.: A general bilinear vector integral. Studia math. 15, 337-352 (1956) · Zbl 0070.28102
[2] Bourbaki, N.: Espaces vectoriels topologiques. Paris: Hermann 1967 · Zbl 0042.35302
[3] Matuszewska, W., Orlicz, W.: A note on modular spaces IX. Bull. Acad. Polon. Sci. Sér. Sci. math. XVI, 10, 1968 · Zbl 0164.43002
[4] Metivier, M.: Advances in the theory of stochastic integrals. Invited lecture to appear in 7th Prague Conference on Information Theory · Zbl 0412.60064
[5] Metivier, M.: Un théorème de Riesz pour les mesures stochastiques multi-indices. C.R. Acad. Sci. Paris 281, Sér. A, 277-280 (1975) · Zbl 0324.60043
[6] Pellaumail, J.: Sur l’intégrale stochastique et la décomposition de Doob-Meyer. Astérisque N? 9, Société Mathématique de France, 1973
[7] Pellaumail, J.: Intégrale de Daniell à valeurs dans un groupe. Rev. Roumaine Math. Pures Appl. XVI, 8, 1227-1236 (1971) · Zbl 0223.28011
[8] Pisier, G.: Séminaire Maurey-Schwartz. 1973-1974, exposé N?VI, Ecole Polytechnique
[9] Sion, M.: Outer measures with values in a topological group. Proc. London math. Soc. (3) 19, 89-106, 1969 · Zbl 0167.14503
[10] Turpin, P.: Suites sommables dans certains espaces de fonctions mesurables. C.R. Acad. Sci. Paris Sér. A, 280, 349-352 (1975) · Zbl 0298.46029
[11] Turpin, P.: Convexité dans les espaces vectoriels topologiques généraux. Thèse-Orsay 1974
[12] Drewnowski, L.: Topological rings of sets, continuous set functions, integration. I, II, III, Bull. Acad. Polon. Sci. 22, pp. 269-286 et 439-445 (1972) · Zbl 0249.28005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.