×

zbMATH — the first resource for mathematics

Cônes rationnels commutativement clos. (French) Zbl 0354.68103

MSC:
68Q45 Formal languages and automata
Software:
ALGOL 60
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] 1. B. S. BAKER et R. V. BOOK, Reversal-Bounded Multipushdown Machines, J. Comp. Syst. Sc., vol. 8, 1974, p. 315-332. Zbl0309.68043 MR375844 · Zbl 0309.68043 · doi:10.1016/S0022-0000(74)80027-9
[2] 2. J. BERSTEL, Une hiérarchie des parties rationnelles de N2, Math. Systems Theory, vol. 7, 1973, p. 114-137. Zbl0257.68078 MR331872 · Zbl 0257.68078 · doi:10.1007/BF01762231
[3] 3. J. BERSTEL et L. BOASSON, Une suite décroissante de cônes rationnels, Institut de Programmation, Paris, n^\circ I. P. 74-75, 1974. MR451876 · Zbl 0288.68037
[4] 4. L. BOASSON, Two Iteration Theorems for Some Families of Languages, J. Comp. Syst. Sc., vol. 7, 1973, p. 583-596. Zbl0298.68053 MR386352 · Zbl 0298.68053 · doi:10.1016/S0022-0000(73)80036-4
[5] 5. L. BOASSON et M. NIVAT, Sur diverses familles de langages fermées par transduction rationnelle, Acta Informatica, vol. 2, 1973, p. 180-188. Zbl0242.68037 MR331873 · Zbl 0242.68037
[6] 6. R. V. BOOK et S. A. GREIBACH, Quasi-Realtime Languages, Math. Systems Theory, vol. 4, 1970, p. 97-111. Zbl0188.33102 MR276019 · Zbl 0188.33102 · doi:10.1007/BF01705890
[7] 7. R. V. BOOK, M. NIVAT et M. PATERSON, Intersections of Linear Context-Free Languages and Reversal-Bounded Multipushdown Machines, Proceedings of 6th annual A.C.M. Symphosium on theory of Computing, 1974, p. 290-296. Zbl0361.68105 · Zbl 0361.68105
[8] 8. J. L. DURIEUX, Sur l’image, par une transduction rationnelle, des mots sur une lettre, R.A.I.R.O., R-2, 1975, p. 25-37. MR395348
[9] 9. S. EILENBERG, Communication au Congrès international des Mathématiciens, Nice, 1970.
[10] 10. S. EILENBERG et M. P. SCHUTZENBERGER, Rational Sets in Commutative Monoids, J. Algebra, vol. 13, 1969, p. 173-191. Zbl0206.02703 MR246985 · Zbl 0206.02703 · doi:10.1016/0021-8693(69)90070-2
[11] 11. M. J. FISCHER et A. L. ROSENBERG, Real-Time Solutions of the Origin-Crossing Problem, Math. Systems theory, vol. 2, 1968, p. 257-263. Zbl0181.01601 MR235931 · Zbl 0181.01601 · doi:10.1007/BF01694010
[12] 12. S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York, 1966. Zbl0184.28401 MR211815 · Zbl 0184.28401
[13] 13. S. GINSBURG, Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland Publishing Company, 1975. Zbl0325.68002 MR443446 · Zbl 0325.68002
[14] 14. S. GINSBURG et J. GOLDSTINE, Intersection-Closed Full AFL and the Recursively Enumerable Languages, Information and Control, vol. 22, 1973, p. 201-231. Zbl0267.68035 MR327087 · Zbl 0267.68035 · doi:10.1016/S0019-9958(73)90274-X
[15] 15. S. GINSBURG et S. A. GREIBACH, Studies in Abstract Families of Languages, Memoirs of the Amer. Math. Soc., vol. 113, 1966, p. 285-396.
[16] 16. S. GINSBURG et S. A. GREIBACH, Principal AFL, J. Comp. Syst. Sc., vol. 4, 1970, p. 308-338. Zbl0198.03102 MR286599 · Zbl 0198.03102 · doi:10.1016/S0022-0000(70)80016-2
[17] 17. S. GINSBURG et S. A. GREIBACH, Multitape AFA, J. A.C.M., vol. 19, 1972, p. 193-221. Zbl0241.68031 MR300828 · Zbl 0241.68031 · doi:10.1145/321694.321695
[18] 18. S. GINSBURG et E. M. SPANIER, Bounded Algol-like Languages, Trans. Amer. Math. Soc., vol. 113, 1964, p. 333-368. Zbl0142.24803 MR181500 · Zbl 0142.24803 · doi:10.2307/1994067
[19] 19. S. GINSBURG et E. M. SPANIER, AFL with the Semilinear Property, J. Comp. Syst. Sc., vol. 5, 1971, p. 365-396. Zbl0235.68029 MR339558 · Zbl 0235.68029 · doi:10.1016/S0022-0000(71)80024-7
[20] 20. J. GOLDSTINE, Substitution and Bounded Languages, J. Comp. Syst. Sc., vol. 6, 1972, p. 9-29. Zbl0232.68030 MR309367 · Zbl 0232.68030 · doi:10.1016/S0022-0000(72)80038-2
[21] 21. S. A. GREIBACH, Chains of Full AFL’s, Math. Systems theory, vol. 4, 1970, p. 231-242. Zbl0203.30102 MR329324 · Zbl 0203.30102 · doi:10.1007/BF01691106
[22] 22. S. A. GREIBACH, Simple Syntactic Operators on Full Semi-AFL’s, J. Comp. Syst. Sc., vol. 6, 1972, p. 30-76. Zbl0269.68046 MR307535 · Zbl 0269.68046 · doi:10.1016/S0022-0000(72)80039-4
[23] 23. S. A. GREIBACH, One Counter Language and the IRS Condition, J. Comp. Syst. Sc., vol. 10, 1975, p. 237-247. Zbl0307.68062 MR395352 · Zbl 0307.68062 · doi:10.1016/S0022-0000(75)80042-0
[24] 24. R. ITO, Every Semilinear Set is a Finite Union of Disjoint Linear Sets, J. Comp. Syst. Sc., vol. 3, 1969, p. 221-231. Zbl0187.28503 MR242851 · Zbl 0187.28503 · doi:10.1016/S0022-0000(69)80014-0
[25] 25. M. LATTEUX, Sur les semilinéaires-langages bornés, Publication n^\circ 60 du Laboratoire de Calcul de l’Université de Lille I, 1975.
[26] 26. L. Y. LIU et P. WEINER, A Characterization of Semilinear Sets, J. Comp. Syst. Sc., vol. 4, 1970, p. 399-307. Zbl0231.68025 MR269448 · Zbl 0231.68025 · doi:10.1016/S0022-0000(70)80015-0
[27] 27. L. Y. LIU et P. WEINER, An Infinite Hierarchy of Intersections of Context-Free Languages, Math. System Theory, vol. 7, 1973, p. 185-192. Zbl0257.68077 MR321366 · Zbl 0257.68077 · doi:10.1007/BF01762237
[28] 28. M. NIVAT, Transduction des langages de Chomsky, Ann. Inst. Fourier, Grenoble, vol. 18, 1968, p. 339-455. Zbl0313.68065 MR238633 · Zbl 0313.68065 · doi:10.5802/aif.287 · numdam:AIF_1968__18_1_339_0 · eudml:73950
[29] 29. R. J. PARIKH, Language Generating Devices, M.I.T. Res. Lab. Electron. Quart. Prog. Rept., vol. 60, 1961, p. 199-212.
[30] 30. B. ROVAN, Proving Containment of Bounded AFL, J. Comp. Syst. Sc., vol. 11, 1975, p.1-55. Zbl0338.68053 MR383850 · Zbl 0338.68053 · doi:10.1016/S0022-0000(75)80048-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.