Wessels, J. Markov programming by successive approximations with respect to weighted supremum norms. (English) Zbl 0354.90087 J. Math. Anal. Appl. 58, 326-335 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 4 ReviewsCited in 46 Documents MSC: 90C40 Markov and semi-Markov decision processes 60Jxx Markov processes × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Blackwell, D., Discounted dynamic programming, Ann. Math. Statist., 36, 226-234 (1965) · Zbl 0133.42805 [2] Denardo, E. V., Contraction mappings in the theory underlying dynamic programming, SIAM Rev., 9, 165-177 (1967) · Zbl 0154.45101 [3] Harrison, J. M., Discrete dynamic programming with unbounded rewards, Ann. Math. Statist., 43, 636-644 (1972) · Zbl 0262.90064 [4] Hinderer, K., Estimates for finite-stage dynamic programs, J. Math. Anal. Appl., 55, 207-238 (1976) · Zbl 0334.49031 [5] Howard, R. A., Dynamic Programming and Markov Processes (1960), MIT Press: MIT Press Cambridge, Mass · Zbl 0091.16001 [6] Lippman, S. A., On dynamic programming with unbounded rewards, Manag. Sci., 21, 1225-1233 (1975) · Zbl 0309.90017 [7] MacQueen, J., A modified dynamic programming method for Markovian decision problems, J. Math. Anal. Appl., 14, 38-43 (1966) · Zbl 0141.17203 [8] van Nunen, J. A.E. E., A set of successive approximation methods for discounted Markovian decision problems, Z. f. Oper. Res., 20, 203-208 (1976) · Zbl 0357.90074 [9] van Nunen, J. A.E. E., Improved successive approximation methods for discounted Markov decision processes, (Prékopa, A., Colloquia Mathematica Societatis János Bolyai 12 (1976), North-Holland: North-Holland Amsterdam), 667-682 · Zbl 0356.90071 [10] Reetz, D., Solution of a Markovian decision problem by successive overrelaxation, Z. f. Oper. Res., 17, 29-32 (1973) · Zbl 0249.90075 [11] Schellhaas, H., Zur Extrapolation in Markoffschen Entscheidungsmodellen mit Diskontierung, Z. f. Oper. Res., 18, 91-104 (1974) · Zbl 0288.90085 [12] Shapiro, J. F., Brouwer’s fixed point theorem and finite state space Markovian decision theory, (J. Math. Anal. Appl., 49 (1975)), 710-712 · Zbl 0302.90056 [13] J. Wesselsin; J. Wesselsin [14] Wessels, J.; van Nunen, J. A.E. E., A principle for generating optimization procedures for discounted Markov decision processes, (Prékopa, A., Colloquia Mathematica Societatis János Bolyai 12 (1976), North-Holland: North-Holland Amsterdam), 683-695 · Zbl 0357.90073 [15] Wijngaard, J., Stationary Markovian Decision Problems; Discrete Time, General State Space (1975), Technological University: Technological University Eindhoven · Zbl 0301.90047 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.