×

zbMATH — the first resource for mathematics

Abstract commutative ideal theory without chain condition. (English) Zbl 0355.06022

MSC:
06F25 Ordered rings, algebras, modules
13A15 Ideals and multiplicative ideal theory in commutative rings
06C05 Modular lattices, Desarguesian lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. D. Anderson,Multiplicative Lattices, Dissertation, University of Chicago, 1974.
[2] –,A remark on the lattice of ideals of a Prüfer domain, Pacific J. Math.57 (1975), 323–324. · Zbl 0287.13003
[3] –,Distributive Noether lattices Michigan Math. J.22 (1975), 109–115. · Zbl 0303.13002
[4] D. D. Anderson, andE. W. Johnson,Weak join principal element lattices, Algebra Universalis (to appear). · Zbl 0356.06025
[5] K. P. Bogart,Structure theorems for regular local Noether lattices, Michigan Math. J.15 (1968), 167–176. · Zbl 0162.03703
[6] –,Distributive local Noether lattices, Michigan Math. J.16 (1969), 215–223. · Zbl 0188.04501
[7] R. P. Dilworth,Abstract commutative ideal theory, Pacific J. Math.12 (1962), 481–498. · Zbl 0111.04104
[8] R. Gilmer,Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. · Zbl 0248.13001
[9] M. F. Janowitz,Principal multiplicative lattices, Pacific J. Math.33 (1970), 653–656. · Zbl 0186.02202
[10] E. W. Johnson,A-transforms and Hilbert functions in local lattices, Trans. Amer. Math. Soc.137 (1969), 125–139. · Zbl 0188.04403
[11] E. W. Johnson,Join principal element lattices, Proc. Amer. Math. Soc. (to appear). · Zbl 0345.06003
[12] –, andJ. P. Lediaev,Representable distributive Noether lattices, Pacific J. Math.28 (1969), 561–564. · Zbl 0172.01803
[13] – and–Join principal elements in Noether lattices, Proc. Amer. Math. Soc.36 (1962), 73–78.
[14] P. J. McCarthy,Principal elements of lattices of ideals, Proc. Amer. Math. Soc.30 (1971), 43–45. · Zbl 0218.13001
[15] M. Ward,Residuated distributive lattices, Duke Math. J.6 (1940), 641–651. · JFM 66.0102.02
[16] – andR. P. Dilworth,Residuated lattices, Trans. Amer. Math. Soc.45 (1939), 335–354. · JFM 65.0084.01
[17] –, and–,The lattice theory of ova. Ann. of Math.40 (1939), 600–608. · JFM 65.0085.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.