×

Hilbert space sectors for solutions of non-linear relativistic equations. (English) Zbl 0355.35062


MSC:

35L60 First-order nonlinear hyperbolic equations
35L20 Initial-boundary value problems for second-order hyperbolic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lee, T. D., Wick, G. C.: Phys. Rev. D9, 2291 (1974)
[2] Ferretti, B.: Atti Acc. Scienze Bologna, Serie XII, Tomo I, 45 (1974)
[3] ’t Hooft, G.: Nucl. Phys. B79, 276 (1974)
[4] Ferretti, B., Velo, G.: Nuovo Cimento Letters10, 451 (1974)
[5] Dashen, R., Hasslacher, B., Neveu, A.: Phys. Rev. D10, 4114, 4130, 4138 (1974)
[6] Goldstone, J., Jackiw, R.: Phys. Rev. D11, 1486 (1975)
[7] Coleman, S.: Phys. Rev. D11, 2088 (1975)
[8] Fröhlich, J.: Phys. Rev. Letters34, 833 (1975)
[9] Gervais, J. L., Sakita, R.: Phys. Rev. D11, 2943 (1975)
[10] Mandelstam, S.: Phys. Rev. D11, 3026 (1975)
[11] Fadeev, L. D.: IAS lectures and references therein, April 1975
[12] Christ, N., Lee, T. D.: Phys. Rev. D12, 1606 (1975)
[13] Goldstone, J.: Nuovo Cimento19, 154 (1961) · Zbl 0099.23006
[14] Whitham, G. B.: Linear and nonlinear waves. New York: Wiley 1974 · Zbl 0373.76001
[15] Finkelstein, D., Misner, C. W.: Ann. Phys.6, 230 (1959) · Zbl 0085.21902
[16] Finkelstein, D.: J. Math. Phys.7, 1218 (1966) · Zbl 0151.44203
[17] Hepp, K.: Commun. math. Phys.35, 265 (1974)
[18] Parenti, C., Strocchi, F., Velo, G.: preprint S.N.S. 22/1975, to appear in Ann. Scuola Norm. Sup. (Pisa). A brief account has been given in Phys. Lett.59B, 157 (1975)
[19] Segal, I.: Ann. Math.78, 339 (1963) · Zbl 0204.16004
[20] Volevic, L. R., Paneyakh, B. P.: Russian Math. Surveys20, 1 (1965)
[21] Gel’fand, I. M., Shilov, G. E.: Generalized Functions, Vol. 2. New York, London: Academic Press 1968
[22] Halmos, P. R.: Measure Theory. New York: Van Nostrand 1950 · Zbl 0040.16802
[23] Yoshida, K.: Functional Analysis. Berlin-Heidelberg-New York: Springer 1966
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.