×

On finite element methods for plasticity problems. (English) Zbl 0355.73035


MSC:

74C99 Plastic materials, materials of stress-rate and internal-variable type
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74R20 Anelastic fracture and damage

References:

[1] Anderheggen, E., Kn?pfel, H.: Finite element limit analysis using linear programming. Int. J. of Solids and Structures8, 1413-1431 (1972) · Zbl 0255.73045 · doi:10.1016/0020-7683(72)90088-1
[2] B?cklund, J.: Mixed finite element analytis of elasto-plastic plates in bending. Chalmers Inst. of Technology, G?teborg, 1972.
[3] Ciarlet, P. G.: Sur l’?l?ment de Clough et Tocher. R. A. I. R. O. R-2 (1974), 19-24 · Zbl 0306.65070
[4] Duvaut, G., Lions, J. L.: Les in?quations en m?chanique et en physique. Paris: Dunod 1972 · Zbl 0298.73001
[5] Johnson, C.: Existence theorems for plasticity problems. Submitted to J. Math. Pures et Appl. · Zbl 0351.73049
[6] Johnson, C.: On the convergence of a mixed finite element method for platebending problems. Numer. Math.21, 43-62 (1973) · Zbl 0264.65070 · doi:10.1007/BF01436186
[7] Strang, G.: The finite element method?linear and nonlinear applications, Proceedings of the International Congress of mathematicians, Vancouver, Canada, 1974 · Zbl 0285.41009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.