Topological automata. (English) Zbl 0355.94064


68Q45 Formal languages and automata
Full Text: EuDML


[1] ARBIB M. A. and MANES E. G., Adjoint Machines, State-behavior and Duality, Technical Report 73 B-l COINS, University of Massachusetts at Amherst (1973). (to appear in J. Pure Appl. Alg.). · Zbl 0323.18002
[2] BOURBAKI N., Topologie Générale, Ch. 10 : Espaces Fonctionnels, Hermann, Paris, 1961. Zbl0139.15904 · Zbl 0139.15904
[3] BRAUER W., ZU den Grundlagen einer Theorie topologischer sequentieller Systeme und Automaten, Berichte GMD Bonn Nr. 31, 1970. Zbl0216.56503 MR266694 · Zbl 0216.56503
[4] BRAUER W., Automates topologiques et ensembles reconnaissables, Séminaire Schützenberger-Lentin-Nivat, année 1969/1970, n^\circ 18. Zbl0216.56601 MR285395 · Zbl 0216.56601
[5] BROWN R., Function Spaces and Product Topologies, Quart. J. Math., Oxford, Ser. 2, 75, 2964, 238-250. Zbl0126.38503 MR165497 · Zbl 0126.38503 · doi:10.1093/qmath/15.1.238
[6] DAY J. M. and FRANKLIN S. P., Spaces of Continuous Relations, Math. Ann., 169, 1967, 289-293. Zbl0146.18302 MR210092 · Zbl 0146.18302 · doi:10.1007/BF01362352
[7] DUGUNDJI J., Topology, Allyn and Bacon, Boston, 1966. Zbl0144.21501 MR193606 · Zbl 0144.21501
[8] EHRIG H. and KREOWSKI H.-J., Power and Initial Automata in Pseudoclosed Categories, Proc. Intern. Symp. : Category Theory Applied to Computation and Control, San Francisco, 1974, 162-169 (to appear in Lecture Notes in Computer Science). Zbl0305.94045 MR409029 · Zbl 0305.94045
[9] EHRIG H. and KREOWSKI H.-J., Systematic Approach of Reduction and Minimization in Automata and System Theory, TU Berlin, 1973, FB 20 Bericht 73-16 (to appear in J. Comp. Syst. Sc). Zbl0343.94025 MR476207 · Zbl 0343.94025 · doi:10.1016/S0022-0000(76)80002-5
[10] EHRIG H., KIERMEIER K. D., KREOWSKI H.-J. and KÜHNEL W., Universal Theory of Automata, Teubner, Stuttgart, 1974. Zbl0289.94023 MR382387 · Zbl 0289.94023
[11] EHRIG H. and PFENDER M. u. a., Kategorien und Automaten, de Gruyter, Berlin-New York, 1972. Zbl0231.94040 MR340364 · Zbl 0231.94040
[12] GOGUEN J. A., Discrete-Time-Machines in Closed Monoidal Categories, I. Quart. Report no. 30, Inst. f. Comp. Res., Univ. of Chicago (1971), condensed version in : Bull. American Math. Soc. 78, 1972, 777-783. Zbl0277.18003 · Zbl 0277.18003 · doi:10.1090/S0002-9904-1972-13032-5
[13] GOGUEN J. A., Systems and Minimal Realization, Proc. of the 1971 IEEE Conf. on Decision and Control, Miami Beach, 1971, 42-46.
[14] HAHN H., Reelle Funktionen, I., Akademische Verlagsges. Leipzig, 1932. Zbl0005.38903 JFM58.0242.05 · Zbl 0005.38903
[15] HERRLICH H., Topologische Reflexionen und Coreflexionen, Berlin, Heidelberg, New York, 1968 (Lecture Notes in Mathematics 78). Zbl0182.25302 MR256332 · Zbl 0182.25302 · doi:10.1007/BFb0074312
[16] KREOWSKI H.-J., Automaten in pseudoabgeschlossenen Kategorien, Diplomarbeit TU Berlin, 1974.
[17] MAC LANE S., Categories for the Working Mathematician, Springer, Berlin, Heidelberg, New York, 1972. Zbl0232.18001 · Zbl 0232.18001
[18] MICHAEL E., Topologies on Spaces of Subsets, Trans. American Math. Soc, 81, 1951, 152-182. Zbl0043.37902 MR42109 · Zbl 0043.37902 · doi:10.2307/1990864
[19] POHL H.-J., Ein Ansatz zur Theorie topologischer Automaten, EIK, 1974.
[20] STEENROD N. E., A Convenient Category of Topological Spaces, Michigan Math. J., 14, 1967, 133-152. Zbl0145.43002 MR210075 · Zbl 0145.43002 · doi:10.1307/mmj/1028999711
[21] VALK R., The Use of Metric and Uniform Spaces for the Formalization of Behavioral Proximity of States, in : 1. GI-Fachtagung über Automatentheorie und Formale Sprachen, 1973, 116-122, (Lecture Notes in Computer Science 2). Zbl0341.94028 MR457020 · Zbl 0341.94028
[22] WISCHNEWSKI M., Initialkategorien, Diss. München, 1972.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.