zbMATH — the first resource for mathematics

Some asymptotic error estimates for finite element approximation of minimal surfaces. (English) Zbl 0356.35034

35J60 Nonlinear elliptic equations
35A35 Theoretical approximation in context of PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N99 Numerical methods for partial differential equations, boundary value problems
Full Text: DOI EuDML
[1] 1. J. H. BRAMBLE, S. R. HILBERT, Bounds on a class of linear functionals with applications to Hermite interpolation, Numer. Math., Vol. 16, 1971, pp. 362-369. Zbl0214.41405 MR290524 · Zbl 0214.41405 · doi:10.1007/BF02165007 · eudml:132041
[2] 2. J. FREHSEEine a-priori-Abschätzung zur Methode der finiten Elemente in der numerischen Variationsrechnung.In : Numerische Behandlung von Variations-und Steuerungsproblem, Tagungsband, Bonn. Math. Schr., Vol. 77, 1975, pp. 115-126. Zbl0316.65027 MR405884 · Zbl 0316.65027
[3] 3. J. FREHSE, Eine gleichmaige asymptotische Fehlerabschätzung zur Methode der finiten Elemente bei quasilinearen Randwertproblemen. In : Theory of Nonlinear Operators. Constructive Aspects, Tagungsband der Akademie der Wissenschaften, Berlin (DDR), 1976. Zbl0368.65054 · Zbl 0368.65054
[4] 4 J FREHSE, R RANNACHER, Eine L1-Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten Elemente In Finite Elemente, Tagungsband, Bonn Math Schr, Vol 89, 1976, pp 92-114 Zbl0359.65093 · Zbl 0359.65093
[5] 5 C JOHNSON, V THOMEE, Error estimates for a finite element approximation of a minimal surface, Math Comp , Vol 29, 1975, pp 343-349 Zbl0302.65086 MR400741 · Zbl 0302.65086 · doi:10.2307/2005555
[6] 6 H D MITTELMANN, On pointwise estimates for a finite element solution of nonlinear boundary value problems To appear Zbl0367.65059 MR445865 · Zbl 0367.65059 · doi:10.1137/0714053
[7] 7 C B MORREY, Multiple intégrals in the calculus of variations Springer Berlm-Heidelberg-New York, 1966 Zbl0142.38701 MR202511 · Zbl 0142.38701
[8] 8 F NATTERER, Uber die punktweise Konvergenz finiter Elemente Numer Math,Vol 25 1975 pp 67-77 Zbl0331.65073 MR474884 · Zbl 0331.65073 · doi:10.1007/BF01419529 · eudml:132361
[9] 9 J NECAS, Les méthodes directes en théorie des équations elliptiques Masson, Paris, 1967 Zbl1225.35003 · Zbl 1225.35003
[10] 10 J NITSCHE, Lineare Spline-Funktionen und die Methode von Ritz fur elliptische Randweirtaufgaben Arch Rational Mech Anal, Vol 36, 1970, pp 348-355 Zbl0192.44503 MR255043 · Zbl 0192.44503 · doi:10.1007/BF00282271
[11] 11 J NITSCHE, L \infty -convergence of finite element approximation 2 Conference on Finite Eléments, Rennes (France), 1975 MR568857
[12] 12 R RANNACHER, Zur L \infty -Konvergenz linearer finiter Elemente Math Z, Vol 149, 1976 pp 69-77 Zbl0321.65055 MR488859 · Zbl 0321.65055 · doi:10.1007/BF01301633 · eudml:172382
[13] 13 R SCOTT, Optimal Lx-estimates Jot the finite element method on irregular meshes Math Comp, Vol 30, 1976 Zbl0349.65060 MR436617 · Zbl 0349.65060 · doi:10.2307/2005390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.