×

zbMATH — the first resource for mathematics

An existence theorem for harmonic mappings of Riemannian manifolds. (English) Zbl 0356.53015

MSC:
53C20 Global Riemannian geometry, including pinching
35J20 Variational methods for second-order elliptic equations
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bishop, R. L. &Crittenden, R. F.,Geometry of manifolds. Academic Press, New York-London, 1964. · Zbl 0132.16003
[2] Bochner, S., Harmonic, surfaces in Riemann metric,Trans. Amer. Math. Soc., 47 (1940), 146–154. · Zbl 0022.39703
[3] Eells, J. &Sampson, H. H., Harmonic mappings of Riemannian manifolds.Amer. J. Math., 86 (1964), 109–160. · Zbl 0122.40102
[4] Eliasson, H. I., Variation integrals in fibre bundles.Proceedings Symposium in Pure Mathematics Amer Math. Soc., 16 (1970), 67–89. · Zbl 0205.51802
[5] Gromoll, D., Klingenberg, W. &Meyer, W.,Riemannsche Geometrie im Grossen. Lecture Notes in Mathematics, No. 55, Springer, Berlin-Heidelberg-New York, 1968. · Zbl 0155.30701
[6] Hamilton, R. S.,Harmonic maps of manifolds with boundary. Lecture Notes in Mathematics, No. 471, Springer, Berlin-Heidelberg-New York 1975. · Zbl 0308.35003
[7] Hartman, P., On homotopic harmonic maps.Canad. J. Math., 19 (1967), 673–687. · Zbl 0148.42404
[8] Hildebrandt, S. &Kaul, H., Two-dimensional variational problems with obstructions, and Plateau’s problem forH-surfaces in a Riemannian manifold.Comm. Pure Appl. Math., 25 (1972), 187–223. · Zbl 0245.53006
[9] Hildebrandt, S., Kaul, H. &Widman, K.-O., Harmonic mappings into Riemannian manifolds with non-positive sectional curvature.Math. Scand., 37, (1975), 257–263. · Zbl 0321.53036
[10] –, Dirichlet’s boundary value problem for harmonic mappings of Rieamnnian manifolds.Math. Z., 147 (1976), 225–236. · Zbl 0318.31010
[11] Hildebrandt, S. &Widman, K.-O., Some regularity results for quasilinear elliptic systems of second order.Math. Z., 142 (1975), 67–86. · Zbl 0317.35040
[12] Karcher, H., Schnittort und konvexe Mengen in vollständigen Riemannschen Mannigfaltigkeiten.Math. Ann., 177 (1968), 105–121. · Zbl 0157.28801
[13] –, Anwendungen der Alexandrowschen Winkelvergleichssätze.Manuscripta Math., 2 (1970), 77–102. · Zbl 0185.25803
[14] Kaul, H., Sehranken für die Christoffelsymbole.Manuscripta Math., 19 (1976), 261–273. · Zbl 0332.53025
[15] Ladyženskaya, O. A. &Ural’ceva, N. N.,Linear and quasilinear elliptic equations. New York and London: Academic Press 1968.
[16] Morrey, C. B., The problem of Plateau on a Riemannian manifold.Ann. of Math., 49 (1948), 807–851. · Zbl 0033.39601
[17] –,Multiple integrals in the calculus of variations. Springer, Berlin-Heidelberg-New York, 1966. · Zbl 0142.38701
[18] Sperner, E., jr. Zur Regularitätstheorie gewisser Systeme elliptischer Differentialgleichungen. Dissertation, Bonn 1975.
[19] Uhlenbeck, K., Harmonic maps; a direct method in the calculus of variations.Bull. Amer. Math. Soc., 76 (1970), 1082–1087. · Zbl 0208.12802
[20] Widman, K.-O., The singularity of the Green function for non-uniformly elliptic partial differential equations with discontinuous coefficients. Uppsala University, Dec 1970.
[21] Widman, K.-O., Inequalities for Green functions of second order elliptic operators. Report 8-1972, Dept. Math. Linköping University. · Zbl 0164.13101
[22] Wiegner, M., Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme,Math. Z., 147 (1976), 21–28. · Zbl 0316.35039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.