Stability results for nonlinear feedback systems. (English) Zbl 0356.93025


93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
Full Text: DOI


[1] Luré, A. I., (Einige Nichtlineare Problem aus der Theorie der Automatischen Regelung (1957), Akademie Verlag: Akademie Verlag Berlin) · Zbl 0085.34501
[2] Popov, V. M., Absolute stability of nonlinear control systems of automatic control, Automation Rem. Control, 22, 857-875 (1962) · Zbl 0107.29601
[3] Narendra, K. S.; Taylor, J. H., (Frequency Domain Criteria for Absolute Stability (1973), Academic Press: Academic Press New York) · Zbl 0266.93037
[4] Willems, J. L., (Stability Theory of Dynamical Systems (1970), Nelson: Nelson London) · Zbl 0222.93010
[5] Desoer, C. A.; Vidyasagar, M., (Feedback Systems: Input-Output Properties (1975), Academic Press: Academic Press New York) · Zbl 0327.93009
[6] Kalman, R. E., Lyapunov functions for the problem of Luré in automatic control, (Proc. Nat. Acad. Sci. U.S.A., 49 (1963)), 201-205 · Zbl 0113.07701
[7] Yakubovich, V. A., Absolute stability of nonlinear control in critical cases, parts I and II, Automation Rem. Control, 24, 655-688 (1963) · Zbl 0137.28901
[8] Popov, V. M., Hyperstability and optimality of automatic systems with several control functions, Rev. Roum. Sci. Tech., Ser. Electrotech. Energ., 9, 629-690 (1964)
[9] Anderson, B. D., A system theory criterion for positive real matrices, J. SIAM Control, 5, 171-182 (1967) · Zbl 0158.03701
[10] Brockett, R. W., Path integrals, Liapunov functions, and quadratic minimization, (Proc. 4th Allerton Conf. on Circuit and Systems Theory (1966), University of Illinois), 685-697
[11] Zames, G., On the input-output stability of time-varying nonlinear feedback systems, part I: Conditions derived using concepts of loop gain, conicity and positivity; part II: Conditions involving circles in the frequency plane and sector nonlinearities, IEEE Trans. Aut. Control, AC-11, 465-476 (1966)
[12] Willems, J. C., Dissipative dynamical systems, part I: General theory; part II: Linear systems with quadratic supply rates, Arch. Rational Mech. Analysis, 45, 352-393 (1972) · Zbl 0252.93003
[13] Moylan, P. J., Implications of passivity in a class of nonlinear systems, IEEE Trans. Aut. Control, AC-19, 373-381 (1974) · Zbl 0279.93020
[14] Hill, D. J.; Moylan, P. J., The stability of nonlinear dissipative systems, IEEE Trans. Aut. Control, AC-21 (1976), to appear · Zbl 0356.93025
[15] Hill, D. J.; Moylan, P. J., Cyclo-dissipativeness, dissipativeness and losslessness for nonlinear dynamical systems, (Technical Report EE7526 (1975), Department of Electrical Engineering, University of Newcastle) · Zbl 0356.93025
[16] Balakrishnan, A. V., On the controllability of a nonlinear system, (Proc. Nat. Acad. Sci. U.S.A., 55 (1966)), 465-468 · Zbl 0143.32003
[17] LaSalle, J.; Lefschetz, S., (Stability by Lyapunov’s Direct Method (1961), Academic Press: Academic Press New York) · Zbl 0098.06102
[18] Willems, J. C., The generation of Lyapunov functions for input-output stable systems, J. SIAM Control, 9, 105-134 (1971) · Zbl 0224.93029
[19] Anderson, B. D.; Vongpanitlerd, S., (Network Analysis and Synthesis (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ)
[20] Anderson, B. D., Stability of control systems with multiple nonlinearities, J. Franklin Inst., 281, 155-160 (1966) · Zbl 0201.47404
[21] Apostol, T. M., (Mathematical Analysis (1957), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0077.05501
[22] Popov, V. M., (Hyperstability of Control Systems (1973), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0276.93033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.