×

zbMATH — the first resource for mathematics

Initial layers of \(\mathbb Z_l\)-extensions of complex quadratic fields. (English) Zbl 0357.12003

MSC:
11R04 Algebraic numbers; rings of algebraic integers
11R32 Galois theory
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Candiotti , ALAN: Thesis , Harvard University, 1973.
[2] Carroll, J.E. : On Determining the Quadratic Subfields of Z 2-extensions of Complex Quadratic Fields . Compositio Mathematica,30 (1975) 259-271. · Zbl 0314.12005
[3] Coates, John : On K2 and some Classical Conjectures in Algebraic Number Theory . Annals of Math. 95 (1972) 99-116. · Zbl 0245.12005
[4] Greenberg, R. : On the Iwasawa Invariants of Totally Real Number Fields (to appear) . · Zbl 0334.12013
[5] Hasse, H. : Zahlentheorie , Akademie-Verlag, 1949. · Zbl 0035.02002
[6] Iwasawa, K. : On Zl-extensions of Algebraic Number Fields . Annals of Math., series 2 (1973) (98) 187-326. · Zbl 0285.12008
[7] Iwasawa, K. : A Note on the Class Numbers of Algebraic Number Fields . Abh. Math. Sem. Univ. Hamburg, 20 (1956) 257-58. · Zbl 0074.03002
[8] Mazur, B. : private correspondence .
[9] Serre, J.P. : Classes des Corps Cyclotomiques . Seminaire Bourbaki, Dec. 1958. · Zbl 0119.27603
[10] Scholz, A. : Idealklassen und Einheiten in Kubischen Körper . Monatsh. Math. Phys. 30 (1933) 211-222. · Zbl 0007.00301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.