×

zbMATH — the first resource for mathematics

On the consistency of Borel’s conjecture. (English) Zbl 0357.28003

MSC:
28A05 Classes of sets (Borel fields, \(\sigma\)-rings, etc.), measurable sets, Suslin sets, analytic sets
03E15 Descriptive set theory
03C60 Model-theoretic algebra
54H05 Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets)
28-00 General reference works (handbooks, dictionaries, bibliographies, etc.) pertaining to measure and integration
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Besicovitch, A. S., Relations between concentrated sets and sets possessing property C.Proc. Cambridge Philos. Soc., 38 (1942), 20–23. · Zbl 0063.00348 · doi:10.1017/S0305004100022179
[2] Borel, E., Sur la classification des ensembles de mesure nulle,Bull. Soc. Math. France, 47 (1919), 97–125. · JFM 47.0181.02
[3] Cohen, P. J.,Set Theory and the Continuum Hypothesis. Benjamin, 1966. · Zbl 0182.01301
[4] Darst, R. B., A universal null set which is not concentrated.Fund. Math., 62 (1968), 47–48. · Zbl 0155.02502
[5] –, Some remarks on Hausdorff measure,Fund. Math., 64 (1969), 325–328. · Zbl 0176.33802
[6] –, A CBV image of a universal null set need not be a universal null set,Fund. Math., 62 (1970), 219–220. · Zbl 0196.01301
[7] Devlin, K. J. & Johnsbraten, H.,The Souslin Problem. Lecture Notes in Mathematics 405, Springer-Verlag, 1974. · Zbl 0289.02043
[8] Hausdorff, F.,Summen von 1 Mengen. Fund Math., 26 (1934), 241–255. · JFM 62.0228.03
[9] Kuratowski, C.,Topology volume I. Academic Press, 1966. · Zbl 0158.40901
[10] Lavrentieff, M. M., Contribution a la théorie des ensembles homeomorphes,Fund. Math., 6 (1924), 149–160.
[11] Lusin, N.,Théorie des fonctions, CRAS Paris (1958) 1914, 1258–1261.
[12] Martin, D. A. &Solovay, R. M. Internal Cohen extensions.Ann. Math. Logic, 2 (1970), 143–178. · Zbl 0222.02075 · doi:10.1016/0003-4843(70)90009-4
[13] Mathias, A., On a generalization of Ramsey’s theorem. Thesis, Cambridge, 1969.
[14] Menas, T., On strong compactness and supercompactness. Thesis, Berkeley, 1973. · Zbl 0299.02084
[15] Rothberger, F., Eine verscharfung der eigenschaft C.Fund. Math., 30 (1938), 50–55. · JFM 64.0622.01
[16] –, Sur les families indenombrables des suites de nombres naturels et les problèmes concernant la propriété C.Proc. Cambridge Philos. Soc., 37 (1941), 109–126. · JFM 67.0990.01 · doi:10.1017/S0305004100021617
[17] Sacks, G. E., Forcing with perfect closed sets.Proceeding Symposium in Pure Mathematics 13, Amer. Math. Soc., Providence, Rhode Island, 1971, 331–355. · Zbl 0226.02047
[18] Sierpinski, W., Sur un ensemble non denombrable, donc toute image continue est de mesure nulle.Fund. Math., 11 (1928), 301–304.
[19] – Les transformations continues et les transformations par fonctions continues.Towarzystwo naukowe warszawskie, Sprawozdańia z posiedzén, 30 (1937), 10–12.
[20] – Sur le rapport de la propriété (C) a la théorie générale des ensembles.Fund. Math 29 (1937), 91–96.
[21] – Remarque sur le probleme de l’invariance topologique de la propriété (C),Fund. Math. 30 (1938), 56–58. · JFM 64.0622.02
[22] Sierpinski, W.,Hypothese du Continu, Chelsea 1956.
[23] Sierpinski, W., &Szpilrajn, E., Remarque sur le problème de la mesure,Fund. Math., 26 (1934), 256–261. · JFM 62.0241.07
[24] Solovay, R. M., A model of set theory in which every set of reals is Lebesgue, measurable,Ann. of Math., 92 (1970), 1–56. · Zbl 0207.00905 · doi:10.2307/1970696
[25] Solovay, R. M. &Tennenbaum, S., Iterated Cohen extensions and Souslin’s problem.Ann. of Math., 94 (1971), 201–245. · Zbl 0244.02023 · doi:10.2307/1970860
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.