×

zbMATH — the first resource for mathematics

Asymptotic stability and energy decay rates for solutions of hyperbolic equations with boundary damping. (English) Zbl 0357.35006

MSC:
35B40 Asymptotic behavior of solutions to PDEs
35L05 Wave equation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-0396(75)90009-1 · Zbl 0326.93018 · doi:10.1016/0022-0396(75)90009-1
[2] Lions, Problèmes aux limites non-homogenes et applications II (1968)
[3] Russell, Studies in Appl. Math. 52 pp 189– (1973) · Zbl 0274.35041 · doi:10.1002/sapm1973523189
[4] Lions, Problèmes aux limites non-homogenes et applications I (1968) · Zbl 0165.10801
[5] Lax, Scattering theory (1967)
[6] DOI: 10.1002/cpa.3160160407 · Zbl 0161.08001 · doi:10.1002/cpa.3160160407
[7] DOI: 10.1002/cpa.3160020205 · Zbl 0035.34601 · doi:10.1002/cpa.3160020205
[8] Hörmander, Linear partial differential operators (1963) · Zbl 0108.09301 · doi:10.1007/978-3-642-46175-0
[9] DOI: 10.1016/0022-247X(69)90175-9 · Zbl 0179.13303 · doi:10.1016/0022-247X(69)90175-9
[10] Holmgren, Öfvers. K. Vetenskaps Akad. Förh. 58 pp 91– (1901)
[11] Dunford, Linear operators II. Spectral theory (1963) · Zbl 0047.35903
[12] Courant, Methods of mathematical physics II. Partial differential equations (1962) · Zbl 0099.29504
[13] DOI: 10.1137/0309030 · doi:10.1137/0309030
[14] DOI: 10.1137/0309004 · Zbl 0216.55501 · doi:10.1137/0309004
[15] DOI: 10.1512/iumj.1974.24.24004 · Zbl 0281.35012 · doi:10.1512/iumj.1974.24.24004
[16] DOI: 10.1512/iumj.1972.22.22022 · Zbl 0227.35064 · doi:10.1512/iumj.1972.22.22022
[17] DOI: 10.1002/cpa.3160220605 · Zbl 0209.40402 · doi:10.1002/cpa.3160220605
[18] DOI: 10.1002/cpa.3160200105 · Zbl 0152.10003 · doi:10.1002/cpa.3160200105
[19] DOI: 10.1090/S0002-9947-1957-0090748-2 · doi:10.1090/S0002-9947-1957-0090748-2
[20] DOI: 10.1002/cpa.3160190407 · Zbl 0161.08002 · doi:10.1002/cpa.3160190407
[21] DOI: 10.1002/cpa.3160140327 · Zbl 0101.07701 · doi:10.1002/cpa.3160140327
[22] Russell, Differential games and control theory (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.