×

zbMATH — the first resource for mathematics

Hausdorff measure and the Navier-Stokes equations. (English) Zbl 0357.35071

MSC:
35Q30 Navier-Stokes equations
35D05 Existence of generalized solutions of PDE (MSC2000)
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Almgren, F.J., Jr.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Memoirs of the American Mathematical Society 165. Providence, R. I.: American Mathematical Society 1976 · Zbl 0327.49043
[2] Federer, H.: Geometric measure theory. Berlin-Heidelberg-New York: Springer 1969 · Zbl 0176.00801
[3] Hewitt, E., Stromberg, K.: Real and abstract analysis. Berlin-Heidelberg-New York: Springer 1965 · Zbl 0137.03202
[4] Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. Revised English edition. New York: Gordon and Breach 1964
[5] Leray, J.: Acta Math.63, 193–248 (1934) · JFM 60.0726.05
[6] Mandelbrot, B.: Intermittet turbulence and fractal dimension kurtosis and the spectral exponent 5/3+B. In: Turbulence and Navier-Stokes equation; Lecture Notes in Mathematics 565. Berlin-Heidelberg-New York: Springer 1976 · Zbl 0372.76043
[7] Scheffer, V.: Partial regularity of solutions to the Navier-Stokes equations. Pacific J. M., to appear · Zbl 0325.35064
[8] Scheffer, V.: Turbulence and Hausdorff dimension. In: Turbulence and Navier-Stokes equation; Lecture Notes in Mathematics 565. Berlin-Heidelberg-New York: Springer 1976 · Zbl 0394.76029
[9] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press 1970 · Zbl 0207.13501
[10] Stein, E.M., Weiss, G.L.: Introduction to fourier analysis on euclidean spaces. Princeton: Princeton Univ. Press 1971 · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.