×

On topological machines. (English) Zbl 0357.94049


MSC:

68Q45 Formal languages and automata
20M35 Semigroups in automata theory, linguistics, etc.
22A25 Representations of general topological groups and semigroups
22A15 Structure of topological semigroups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] (Arbib, M. A., Algebraic Theory of Machines, Languages and Semigroups (1968), Academic Press: Academic Press New York) · Zbl 0181.01501
[2] Arbib, M. A., (Theories of Abstract Automata (1969), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J.) · Zbl 0193.32801
[3] Bednarek, A. R.; Wallace, A. D., Finite approximants of compact totally disconnected machines, Math. Systems Theory, 1, 209-216 (1967) · Zbl 0174.02903
[4] Bednarek, A. R.; Wallace, A. D., Equivalences of machine state spaces, Mat. Casopis Sloven. Akad. Vied., 17, 1-7 (1967) · Zbl 0153.31801
[5] Booth, T. L., (Sequential Machines and Automata Theory (1967), Wiley: Wiley New York) · Zbl 0165.02303
[6] Bourbaki, N., (“General Topology,” Part 1 (1966), Addison-Wesley: Addison-Wesley Reading, Mass.) · Zbl 0145.19302
[7] Clifford, A. H., Connected ordered topological semigroups with idempotent end points I, Trans. Amer. Math. Soc., 88, 423-535 (1958)
[8] Cohen, H.; Wade, L. I., Clans with zero on an interval, Trans. Amer. Math. Soc., 88, 523-535 (1958) · Zbl 0081.25601
[9] Day, J. M., Expository lectures on topological semigroups, (Arbib, M. A., Algebraic Theory of Machines, Languages and Semigroups (1968), Academic Press: Academic Press New York) · Zbl 0181.01501
[10] Day, J. M., Semigroup acts, algebraic and topological, (“Proceedings of Second Florida Symposion on Automata and Semigroups,” Part I. “Proceedings of Second Florida Symposion on Automata and Semigroups,” Part I, Univ. of Florida (1971))
[11] Ginsburg, S., Some remarks on abstract machines, Trans. Amer. Math. Soc., 96, 400-444 (1960) · Zbl 0097.00501
[12] Ginsburg, S., (Introduction to Mathematical Machine Theory (1962), Addison-Wesley: Addison-Wesley Reading, Mass.) · Zbl 0102.33804
[13] Hartmanis, J.; Stearns, R. E., (Algebraic Structure Theory Sequential Machines (1966), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J.) · Zbl 0154.41701
[14] Helson, H., (Lectures on Invariant Subspaces (1964), Academic Press: Academic Press New York) · Zbl 0119.11303
[15] C. F. Kelemen; C. F. Kelemen · Zbl 0228.54033
[16] Lin, Y. F., On input semigroups of automata, Math. Systems Theory, 4, 35-39 (1970) · Zbl 0188.33201
[17] Madison, B., Congruences in topological semigroups, (“Proceedings of Second Florida Symposium on Automata and Semigroups,” Part II. “Proceedings of Second Florida Symposium on Automata and Semigroups,” Part II, Univ. of Florida (1971)) · Zbl 0181.03401
[18] Norris, E. M., Some structure theorems for topological machines, (Doctoral thesis (1969), Univ. of Florida)
[19] Paalman-de Miranda, A. B., (Topological Semigroups (1970), Mathematish Centrum: Mathematish Centrum Amsterdam) · Zbl 0242.22003
[20] Sikdar, K., Some aspects of topological semigroups acts and machines, (Doctoral thesis (1974), Indian Statistical Institute)
[21] Varadarajan, V. S., (Geometry of Quantum Theory, Vol. 2 (1970), Van Nostrand-Reinhold: Van Nostrand-Reinhold New York) · Zbl 0194.28802
[22] Wallace, A. D., Recent results on binary topological algebras, (Folley, K. W., Semigroups (1969), Academic Press: Academic Press New York), 261-267 · Zbl 0194.02902
[23] Willard, S., (General Topology (1970), Addison-Wesley: Addison-Wesley Reading, Mass.) · Zbl 0205.26601
[24] Wymore, A. W., (A Mathematical Theory of Systems Engineering: The Elements (1967), Wiley: Wiley New York)
[25] Yeh, R. T., Structural equivalence of automata, Math. Systems Theory, 4, 198-211 (1970) · Zbl 0203.30104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.