Kitada, Hitoshi On the completeness of modified wave operators. (English) Zbl 0358.35024 Proc. Japan Acad. 52, 409-412 (1976). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 Documents MSC: 35J10 Schrödinger operator, Schrödinger equation 35R20 Operator partial differential equations (= PDEs on finite-dimensional spaces for abstract space valued functions) 35P25 Scattering theory for PDEs × Cite Format Result Cite Review PDF Full Text: DOI References: [1] P. K. Alsholm and T. Kato: Scattering with long range potentials. Proc. Symp. Pure Math., 23, 393-399 (1973). · Zbl 0263.47008 [2] V. S. Buslaev and V. B. Matveev: Wave operators for the Schrodinger equation with a slowly decreasing potential. Theo. Math. Phys., 2, 266-274 (1970) (Eng. translation from Russian). [3] L. Hormander: Fourier integral operators. I. Acta Math., 127, 79-183 (1971). · Zbl 0212.46601 · doi:10.1007/BF02392052 [4] T. Ikebe: Spectral representation for Schrodinger operators with long-range potentials. Jour. Functional Analysis, 20, 158-177 (1975). · Zbl 0315.35067 · doi:10.1016/0022-1236(75)90048-8 [5] T. Ikebe and Y. Saito: Limiting absorption method and absolute continuity for the Schrodinger operator. Jour. Math. Kyoto Univ., 12, 513-542 (1972). · Zbl 0257.35022 [6] H. Kitada: A stationary approach to long-range scattering. Osaka Jour. Math., 13, 311-333 (1976). · Zbl 0335.47004 [7] H. Kitada: Scattering theory for Schrodinger operators with long-range potentials. I. Abstract theory (to appear). · Zbl 0356.47006 · doi:10.2969/jmsj/02940665 [8] R. Lavine: Absolute continuity of positive spectrum for Schrodinger operators with long-range potentials. Jour. Functional Analysis, 12, 30-54 (1973). · Zbl 0246.47017 · doi:10.1016/0022-1236(73)90088-8 [9] Y. Saito: Spectral theory for second-order differential operators with long-range operator-valued coefficients. I. Japanese Jour. Math., New Series, 1, 311-349 (1975). · Zbl 0324.34017 [10] Y. Saito: Spectral theory for second-order differential operators with long-range operator-valued coefficients. II. Japanese Jour. Math., New Series, 1, 351-382 (1975). · Zbl 0324.34018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.