×

On tensor products of certain group \(C^*\)-algebras. (English) Zbl 0358.46040


MSC:

46L05 General theory of \(C^*\)-algebras
46L10 General theory of von Neumann algebras
46M05 Tensor products in functional analysis
22D15 Group algebras of locally compact groups
22D25 \(C^*\)-algebras and \(W^*\)-algebras in relation to group representations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Dixmier, J, LES C∗-algèbres et leurs représentations, (1969), Gauthier-Villars Paris · Zbl 0174.18601
[2] Dixmier, J, LES algèbres d’opérateurs dans l’espace hilbertien, (1969), Gauthier-Villars Paris · Zbl 0175.43801
[3] {\scE. G. Effros and E. C. Lance}, Tensor products of operator algebras, to appear. · Zbl 0372.46064
[4] Guichardet, A, Tensor products of C∗-algebras, Soviet math. dokl., 6, 210-213, (1965) · Zbl 0127.07303
[5] Hall, M, The theory of groups, (1959), Macmillan New York
[6] Lance, E.C, On nuclear C∗-algebras, J. functional analysis, 12, 157-176, (1973) · Zbl 0252.46065
[7] {\scE. C. Lance}, Private communication.
[8] Powers, R.T, Simplicity of the C∗-algebra associated with the free group on two generators, Duke. math. J., 42, 151-156, (1975) · Zbl 0342.46046
[9] Sakai, S, The theory of W∗-algebras, () · Zbl 0267.46048
[10] Sakai, S, C∗-algebras and W∗-algebras, (1971), Springer-Verlag Berlin · Zbl 0219.46042
[11] Takesaki, M, On the cross-norm of the direct product of C∗-algebras, Tôhoku math. J., 16, 111-122, (1964) · Zbl 0127.07302
[12] Tomiyama, J, Applications of Fubini type theorem to the tensor product of C∗-algebras, Tôhoku math. J., 19, 213-226, (1967) · Zbl 0166.11401
[13] Tomiyama, J, Tensor products and projections of norm one in von Neumann algebras, () · Zbl 0176.44002
[14] Wassermann, S, Extension of normal functionals on W∗-tensor products, (), 301-307 · Zbl 0315.46057
[15] Wassermann, S, The slice map problem for C∗-algebras, (), 537-559, (3) · Zbl 0321.46048
[16] Wulfsohn, A, The primitive spectrum of a tensor product of C∗-algebras, (), 1094-1096 · Zbl 0174.18603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.