zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the conjecture of Birch and Swinnerton-Dyer. (English) Zbl 0359.14009

14G10Zeta-functions and related questions
14H45Special curves and curves of low genus
14H25Arithmetic ground fields (curves)
14G25Global ground fields
11G15Complex multiplication and moduli of abelian varieties
11R42Zeta functions and $L$-functions of global number fields
Full Text: DOI EuDML
[1] Artin, E., Tate, J.: Class field theory. New York: Benjamin 1967 · Zbl 1179.11040
[2] Birch, B., Swinnerton-Dyer, P.: Notes on elliptic curves II. J. Reine Angew. Math.218, 79-108 (1965) · Zbl 0147.02506 · doi:10.1515/crll.1965.218.79
[3] Coates, J., Wiles, A.: Kummer’s criterion for Hurwitz numbers, to appear in Proceedings of the International Conference on Algebraic Number Theory held in Kyoto, Japan, 1976 · Zbl 0369.12009
[4] Damerell, R.:L-functions of elliptic curves with complex multiplication I. Acta Arith.17, 287-301 (1970) · Zbl 0209.24603
[5] Deuring, D.: Die Zetafunktionen einer algebraischen Kurve vom Geschlechter Eins, I, II, III, IV. Nachr. Akad. Wiss. Göttingen, 85-94 (1953); 13-42 (1955); 37-76 (1956); 55-80 (1957) · Zbl 0064.27401
[6] Fröhlich, A.: Formal Groups. Lecture Notes in Math.74. Berlin-Heidelberg-New York: Springer 1968 · Zbl 0177.04801
[7] Hasse, H.: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil II, 2nd ed. Würzburg-Wien: Physica 1965 · Zbl 0138.03202
[8] Iwasawa, K.: On some modules in the theory of cyclotomic fields. J. Math. Soc. Japan,16, 42-82 (1964) · Zbl 0125.29207 · doi:10.2969/jmsj/01610042
[9] Lubin, J.: One parameter formal Lie groups overp-adic integer rings. Ann. of Math.80, 464-484 (1964) · Zbl 0135.07003 · doi:10.2307/1970659
[10] Lubin, J., Tate, J.: Formal complex multiplication in local fields. Ann. Math.81, 380-387 (1965) · Zbl 0128.26501 · doi:10.2307/1970622
[11] Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Inventiones math.18, 183-266 (1972) · Zbl 0245.14015 · doi:10.1007/BF01389815
[12] Robert, G.: Unités elliptiques. Bull. Soc. Math. France, Mémoire36, 1973
[13] Robert, G.: Nombres de Hurwitz et Unités elliptiques. To appear
[14] Sah, H.: Automorphisms of finite groups. J. Algebra10, 47-68 (1968) · Zbl 0159.31001 · doi:10.1016/0021-8693(68)90104-X
[15] Serre, J.P., Tate, J.: Good reduction of abelian varieties. Ann. Math.88, 492-517 (1968) · Zbl 0172.46101 · doi:10.2307/1970722
[16] Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Pub. Math. Soc. Japan,11, 1971 · Zbl 0221.10029
[17] Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable IV. Lecture Notes in Math.476. Berlin-Heidelberg-New York: Springer 1975 · Zbl 1214.14020
[18] Wiles, A.: Higher explicit reciprocity laws. To appear · Zbl 0378.12006