zbMATH — the first resource for mathematics

An operator-theoretical approach to error estimation. (English) Zbl 0359.41012

41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
Full Text: DOI EuDML
[1] Babu?ka, I., Práger, M., Vitásek, E.: Numerical processes in differential equations. London: Interscience 1966 · Zbl 0156.16003
[2] Bourbaki, N.: Théorie des ensembles, Chs. 1, 2, Fasc. XVII de Eléments de mathématique, 2.éd. Paris: Hermann 1960
[3] Bramble, J. H., Hilbert, S. R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7, 112-124 (1970) · Zbl 0201.07803 · doi:10.1137/0707006
[4] Ciarlet, P. G., Raviart, P. A.: General Lagrange and Hermite interpolation inR n with applications to finite element methods. Arch. Rational Mech. Anal.46, 177-199 (1972) · Zbl 0243.41004 · doi:10.1007/BF00252458
[5] Dunford, N., Schwartz, J. T.: Linear operators. Part I: General theory. New York: Interscience 1958 · Zbl 0084.10402
[6] Edwards, R. E.: Functional analysis. Theory and applications. New York: Holt, Rinehart and Winston 1965 · Zbl 0182.16101
[7] Godement, R.: Cours d’algèbre, 3. éd. Paris: Hermann 1966 · Zbl 0115.00803
[8] Jerome, J. W.: Topics in multivariate approximation theory. In: Approximation theory (G. G. Lorentz, ed.), pp. 151-198. New York-London: Academic Press 1973 · Zbl 0331.41009
[9] Meinguet, J.: Realistic estimates for generic constants in multivariate pointwise approximation. In: Topics in numerical analysis II (J. J. H. Miller, ed.), pp. 89-107. London-New York: Academic Press 1975 · Zbl 0346.65010
[10] Sard, A.: Linear approximation. Mathematical Surveys, Vol. 9. Providence, R. I.: American Mathematical Society 1963 · Zbl 0115.05403
[11] Schwartz, L.: Analyse. Deuxième partie: Topologie générale et analyse fonctionnelle. Paris: Hermann 1970 · Zbl 0206.06301
[12] Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces. Berlin-Heidelberg-New York: Springer 1970 · Zbl 0197.38601
[13] Strang, G.: Approximation in the finite element method. Numer. Math.19, 81-98 (1972) · Zbl 0221.65174 · doi:10.1007/BF01395933
[14] Varga, R. S.: Functional analysis and approximation theory in numerical analysis. Regional Conference Series in Applied Math., Vol. 3. Philadelphia, Pa.: Society for Industrial and Applied Mathematics 1971 · Zbl 0226.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.