×

zbMATH — the first resource for mathematics

Locally convex spaces for which \(|lambda(E)=\Lambda[E]\) and the Dvoretsky-Rogers theorem. (English) Zbl 0359.46010
MSC:
46A45 Sequence spaces (including Köthe sequence spaces)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] N. De Grande-De Kimpe : Generalized sequence spaces . Bull. Soc. Math. Belg. XXIII (1971) 123-166. · Zbl 0232.46017
[2] N. De Grange-De Kimpe : Operator theory for bornological spaces . Bull. Soc. Math. Belg. XXVI, (1974) 3-23. · Zbl 0298.47015
[3] N. De Grange-De Kimpe : Criteria for nuclearity in terms of generalized sequence spaces . To appear in Archiv der Mathematik. · Zbl 0359.46011
[4] Ed. Dubinsky and M.S. Ramanujan : Inclusion theorems for absolutely A-summing maps . Math. Ann. 192 (1971) 177-190. · Zbl 0202.13202
[5] A. Grothendieck : Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretsky-Rogers . Boletin Soc. Math. Sao Paulo, 8 (1956). · Zbl 1098.46506
[6] G. Kothe : Topologische lineare Räume . Springer Verlag (1960). · Zbl 0093.11901
[7] A. Pietsch : Verallgemeinerte volkommene Folgenräume . Akademie Verlag (1962). · Zbl 0105.30701
[8] A. Pietsch : Nukleare lokalkonvexe Räume . Akademie Verlag (1965). · Zbl 0184.14602
[9] A. Pietsch : Absolut p-summierende Abbildungen in normierte Räume . Studia Math. 28 (1967) 333-353. · Zbl 0156.37903
[10] R.C. Rosier : Dual spaces of certain vector sequence spaces . Pacific J. Math. 46(2) (1973) 487-501. · Zbl 0263.46009
[11] R.C. Rosier : Vector sequence spaces and the Dvoretsky-Rogers theorem . (To appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.