×

The hyperinvariant subspace lattice of a linear transformation. (English) Zbl 0359.47005


MSC:

47A15 Invariant subspaces of linear operators
15A21 Canonical forms, reductions, classification
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] T. Andô and T. Sekiguchi, Hyperinvariant subspaces of a nilpotent operator, unpublished.
[2] Brickman, L.; Fillmore, P.A., The invariant subspace lattice of a linear transformation, Can. J. math., 19, 810-822, (1967), MR 35, 4242. · Zbl 0153.04801
[3] John B. Conway and Pei Yuan Wu, the Splitting of A (T1 ⊕ T2) and related questions, preprint. · Zbl 0327.46075
[4] Donnellan, T., Lattice theory, (1968), Pergamon Oxford
[5] Douglas, R.G.; Pearcy, Carl, On a topology for invariant subspaces, J. funct. anal., 2, 323-341, (1968), MR{\bf38}, 1547. · Zbl 0174.17903
[6] Douglas, R.G.; Pearcy, Carl; Salinas, Norberto, Hyperinvariant subspaces via topological properties of lattices, Mich. math. J., 20, 109-113, (1973) · Zbl 0268.47009
[7] Halmos, P.R., Eigenvectors and adjoints, Linear algebra appl., 4, 11-15, (1971) · Zbl 0264.15001
[8] Herrero, Domingo A.; Salinas, Norberto, Analytically invariant and bi-invariant subspaces, Trans. amer. math. soc., 173, 117-136, (1972) · Zbl 0253.46126
[9] Hoffman, K.; Kunze, R., Linear algebra, (1971), Prentice-Hall Englewood Cliffs, N.J · Zbl 0212.36601
[10] W.E. Longstaff, A sufficient condition for hyperinvariance, preprint. · Zbl 0371.47008
[11] Radjavi, Heydar; Rosenthal, P., Invariant subspaces, (1973), Springer New York · Zbl 0269.47003
[12] Rosenthal, P., A note on unicellular operators, Proc. am. math. soc., 19, 505-506, (1968), MR{\bf36}, 5753. · Zbl 0161.34503
[13] Stampfli, J.G., On hyponormal and Toeplitz operators, Math. ann., 183, 328-336, (1969), MR 40, 4798. · Zbl 0175.43104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.