×

zbMATH — the first resource for mathematics

On the construction of branched coverings of low-dimensional manifolds. (English) Zbl 0359.55001

MSC:
57M10 Covering spaces and low-dimensional topology
57N10 Topology of general \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] James W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920), no. 8, 370 – 372. · JFM 47.0529.02
[2] -, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. U.S.A. 9 (1923), 93-95.
[3] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. · Zbl 0091.37202
[4] D. B. A. Epstein, The degree of a map, Proc. London Math. Soc. (3) 16 (1966), 369 – 383. · Zbl 0148.43103 · doi:10.1112/plms/s3-16.1.369 · doi.org
[5] George K. Francis, Assembling compact Riemann surfaces with given boundary curves and branch points on the sphere, Illinois J. Math. 20 (1976), no. 2, 198 – 217. · Zbl 0318.57001
[6] Maurice Heins, Interior mapping of an orientable surface into \?², Proc. Amer. Math. Soc. 2 (1951), 951 – 952. · Zbl 0043.30104
[7] Hugh M. Hilden, Three-fold branched coverings of \?³, Amer. J. Math. 98 (1976), no. 4, 989 – 997. · Zbl 0342.57002 · doi:10.2307/2374037 · doi.org
[8] Ulrich Hirsch, Über offene Abbildungen auf die 3-Sphäre, Math. Z. 140 (1974), 203 – 230 (German). · Zbl 0279.57004 · doi:10.1007/BF01214163 · doi.org
[9] Ulrich Hirsch, Offene Abbildungen von Flächen auf die 2-Sphäre mit minimalem Defekt, Arch. Math. (Basel) 27 (1976), no. 6, 649 – 656. · Zbl 0334.55007 · doi:10.1007/BF01224734 · doi.org
[10] Ulrich Hirsch, On regular homotopy of branched coverings of the sphere, Manuscripta Math. 21 (1977), no. 3, 293 – 306. · Zbl 0423.57001 · doi:10.1007/BF01167881 · doi.org
[11] J. F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. · Zbl 0189.54507
[12] A. Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891), no. 1, 1 – 60 (German). · JFM 23.0429.01 · doi:10.1007/BF01199469 · doi.org
[13] W. B. R. Lickorish, Homeomorphisms of non-orientable two-manifolds, Proc. Cambridge Philos. Soc. 59 (1963), 307 – 317. · Zbl 0115.40801
[14] W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Philos. Soc. 60 (1964), 769 – 778. · Zbl 0131.20801
[15] J. Lüroth, Note über Verzweigungsschnitte und Querschnitte in einer Riemann’schen Fläche, Math. Ann. 4 (1871), no. 2, 181 – 184 (German). · JFM 03.0192.02 · doi:10.1007/BF01442591 · doi.org
[16] José M. Montesinos, Three-manifolds as 3-fold branched covers of \?³, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 105, 85 – 94. · Zbl 0326.57002 · doi:10.1093/qmath/27.1.85 · doi.org
[17] John Stallings, On fibering certain 3-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 95 – 100. · Zbl 1246.57049
[18] S. Stöilow, Principes topologiques de la théorie des fonctions analytiques, Gauthier-Villars, Paris, 1938.
[19] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17 – 86 (French). · Zbl 0057.15502 · doi:10.1007/BF02566923 · doi.org
[20] R. J. Wille, Sur la transformation intérieure d’une surface non orientable sur le plan projectif, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 (1953), 63 – 65 (French). · Zbl 0050.17803
[21] John W. Wood, Foliations on 3-manifolds, Ann. of Math. (2) 89 (1969), 336 – 358. · Zbl 0176.21402 · doi:10.2307/1970673 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.