×

zbMATH — the first resource for mathematics

Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity. (English) Zbl 0361.35046

MSC:
35L60 First-order nonlinear hyperbolic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B45 A priori estimates in context of PDEs
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brezis, H., ”Opérateurs Maximaux Monotones”, Amsterdam: North-Holland 1973.
[2] Brockway, G.S., On the uniqueness of singular solutions to boundary-initial value problems in linear elastodynamics, Arch.Rational Mech. Anal. 48, 213–244 (1972). · Zbl 0252.73011 · doi:10.1007/BF00256055
[3] Chernoff, P. & J. Marsden, ”Some Properties of Infinite Dimensional Hamiltonian Systems”, Springer Lecture Notes 425 (1974).
[4] Choquet-Bruhat, Y. (Y. Fourès-Bruhat), Théorème d’existence pour certain systèmes d’équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225 (1952). · Zbl 0049.19201 · doi:10.1007/BF02392131
[5] Choquet-Bruhat, Y., ”Cauchy Problem”, In: Witten, L. (Ed.): Gravitation; an introduction to current research, New York: John Wiley 1962.
[6] Choquet-Bruhat, Y., Solutions C d’équations hyperboliques non linéaires, C.R. Acad. Sci. Paris 272, 386–388 (1971) (see also Gen. Rel. Grav. 1 (1971)). · Zbl 0216.12902
[7] Choquet-Bruhat, Y., Problèmes mathématiques en relativité, Actes Congress Intern. Math. Tome 3, 27–32 (1970).
[8] Choquet-Bruhat, Y., Stabilité de solutions d’équations hyperboliques non linéaires. Application à l’espace-temps de Minkowski en relativité générale, C.R. Acad. Sci. Paris 274, Ser. A (1972), 843. (See also Uspeskii Math. Nauk. XXIX (2) 176, 314–322 (1974).)
[9] Choquet-Bruhat, Y., and L. Lamoureau-Brousse, Sur les équations de l’elasticité relativiste, C.R. Acad. Sci. Paris 276, 1317–1320 (1973). · Zbl 0286.73019
[10] Choquet-Bruhat, Y. and J.E. Marsden, tSolution of the local mass problem in general relativity Comm. Math. Phys. (to appear). (See also C.R. Acad. Si. 282, 609–612 (1976)).
[11] Courant, R. & D. Hilbert, ”Methods of Mathematical Physics”, Vol. II, New York: Interscience 1962. · Zbl 0099.29504
[12] Dionne, P., Sur les problèmes de Cauchy bien posés, J. Anal. Math. Jerusalem 10, 1–90 (1962/63). · Zbl 0112.32301
[13] Dorroh, J.R. & J.E. Marsden, Differentiability of nonlinear semigroups (to appear).
[14] Duvaut, T. & J.L. Lions, ”Les Inéquations en Mécanique et en Physique”, Paris: Dunod 1972. · Zbl 0298.73001
[15] Fichera, G., ”Existence Theorems in Elasticity”, in Handbuch der Physik (ed. C. Truesdell), Vol. IVa/2, Berlin-Heidelberg-New York: Springer 1972.
[16] Fischer, A. & J. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I, Commun. Math. Phys. 28, 1–38 (1972). · Zbl 0247.35082 · doi:10.1007/BF02099369
[17] Fischer, A. & J. Marsden, Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math. 27, Part 2, 219–263 (1975). · doi:10.1090/pspum/027.2/0383456
[18] Frankl, F., Über das Anfangswertproblem für lineare und nichtlineare hyperbolische partielle Differentialgleichungen zweiter Ordnung, Mat. Sb. 2 (44), 814–868 (1937). · Zbl 0018.35906
[19] Friedman, A., ”Partial Differential Equations”, New York: Holt, Rinehart and Winston 1969. · Zbl 0224.35002
[20] Gårding, L., ”Cauchy’s Problem for Hyperbolic Equations”, Lecture Notes, Chicago (1957). · Zbl 0151.14803
[21] Gårding, L., Energy inequalities for hyperbolic systems, in ”Differential Analysis”, Bombay Colloq. (1964), 209–225, Oxford: University Press 1964.
[22] Gurtin, M.E., ”The Linear Theory of Elasticity”, in Handbuch der Physik (ed. C. Truesdell), Vol. IVa/2, Berlin-Heidelberg-New York: Springer 1972.
[23] Hawking, S.W. & G.F.R. Ellis, ”The Large Scale Structure of Spacetime”, Cambridge (1973). · Zbl 0265.53054
[24] Hille, E. & R. Phillips, ”Functional Analysis and Semi-groups”, AMS (1967).
[25] Kato, T., ”Perturbation Theory for Linear Operators”, Berlin-Heidelberg-New York: Springer 1966. · Zbl 0148.12601
[26] Kato, T., Linear evolution equations of ”hyperbolic” type, J. Fac. Sci. Univ. Tokyo 17, 241–258 (1970). · Zbl 0222.47011
[27] Kato, T., Linear evolution equations of ”hyperbolic” type II, J. Math. Soc. Japan 25, 648–666 (1973). · Zbl 0262.34048 · doi:10.2969/jmsj/02540648
[28] Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58, 181–205 (1975). · Zbl 0343.35056 · doi:10.1007/BF00280740
[29] Kato, T., ”Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations”, Springer Lecture Notes 448, 25–70 (1975).
[30] Knops, R.J. & L.E. Payne, ”Uniqueness Theorems in Linear Elasticity”, New York: Springer 1971. · Zbl 0224.73016
[31] Knops, R.J. & L.E. Payne, Continuous data dependence for the equations of classical elastodynamics, Proc. Camb. Phil. Soc. 66, 481–491 (1969). · Zbl 0184.51004 · doi:10.1017/S0305004100045217
[32] Knops, R.J. & E.W. Wilkes, ”Theory of Elastic Stability”, in Handbuch der Physik (ed. C. Truesdell), Vol. VIa/3, Berlin-Heidelberg-New York: Springer 1973. · Zbl 0377.73060
[33] Kōmura, Y., Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19, 473–507 (1967). · Zbl 0163.38302 · doi:10.2969/jmsj/01940493
[34] Krzyzanski, M. & J. Schauder, Quasilineare Differentialgleichungen zweiter Ordnung vom hyperbolischen Typus, Gemischte Randwertaufgaben, Studia. Math. 5, 162–189 (1934). · Zbl 0013.20504 · doi:10.4064/sm-5-1-151-154
[35] Lax, P., Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure and Appl. Math. 8, 615–633 (1955). · Zbl 0067.07502 · doi:10.1002/cpa.3160080411
[36] Lax, P., ”Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves”, SIAM (1973). · Zbl 0268.35062
[37] Leray, J., ”Hyperbolic Differential Equations”, Institute for Advanced Study (Notes) (1953).
[38] Lichnerowicz, A., ”Relativistic Hydrodynamics and Magnetohydrodynamics”, Amsterdam: Benjamin 1967. · Zbl 0193.55401
[39] Marsden, J., ”Applications of Global Analysis in Mathematical Physics”, Publish or Perish (1974). · Zbl 0367.58001
[40] Marsden, J., The existence of non-trivial, complete, asymptotically flat spacetimes, Publ. Dept. Math. Lyon 9, 183–193 (1972). · Zbl 0266.53045
[41] Morrey, C.B., ”Multiple Integrals in the Calculus of Variations”, Berlin-Heidelberg-New York: Springer 1966. · Zbl 0142.38701
[42] Palais, R., ”Foundations of Global Nonlinear Analysis”, Amsterdam: Benjamin 1968. · Zbl 0164.11102
[43] Petrovskii, I., Über das Cauchysche Problem für lineare und nichtlineare hyperbolische partielle Differentialgleichungen, Mat. Sb. 2 (44), 814–868 (1937).
[44] Schauder, J., Das Anfangswertproblem einer quasi-linearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math. 24, 213–246 (1935). · Zbl 0011.35202 · doi:10.4064/fm-24-1-213-246
[45] Sobolev, S.S., ”Applications of Functional Analysis in Mathematical Physics”, Translations of Math. Monographs 7, Am. Math. Soc. (1963). · Zbl 0123.09003
[46] Sobolev, S.S., On the theory of hyperbolic partial differential equations, Mat. Sb. 5 (47), 71–99 (1939).
[47] Wang, C.-C. & C. Truesdell, ”Introduction to Rational Elasticity”, Leyden: Noordhoff 1973. · Zbl 0308.73001
[48] Wheeler, L. & R.R. Nachlinger, Uniqueness theorems for finite elastodynamics, J. Elasticity 4, 27–36 (1974). · Zbl 0294.73005 · doi:10.1007/BF00042400
[49] Wilcox, C.H., Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal. 22, 37–78 (1966). · Zbl 0159.14302 · doi:10.1007/BF00281244
[50] Yosida, K., ”Functional Analysis”, Berlin-Heidelberg-New York: Springer 1971. · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.