Jensen, Arne Local distortion technique, resonances, and poles of the S-matrix. (English) Zbl 0361.47018 J. Math. Anal. Appl. 59, 505-513 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 15 Documents MSC: 47F05 General theory of partial differential operators 35J10 Schrödinger operator, Schrödinger equation 47A40 Scattering theory of linear operators 35P25 Scattering theory for PDEs PDF BibTeX XML Cite \textit{A. Jensen}, J. Math. Anal. Appl. 59, 505--513 (1977; Zbl 0361.47018) Full Text: DOI References: [1] Aguilar, J.; Combes, J. M., A class of analytic perturbations for one-body Schrödinger Hamiltonians, Comm. Math. Phys., 22, 269-279 (1971) · Zbl 0219.47011 [2] Babbitt, D.; Balslev, E., Local distortion techniques and unitarity of the \(S\)-matrix for the 2-body problem, J. Math. Anal. Appl., 54, 316-349 (1976) [3] Babbitt, D.; Balslev, E., A characterization of dilation-analytic potentials and vectors, J. Functional Anal., 18, 1-14 (1975) · Zbl 0304.47009 [4] Newton, R. G., Scattering Theory for Waves and Particles (1966), McGraw-Hill: McGraw-Hill New York [5] Shenk, N.; Thoe, D., Eigenfunction expansion and scattering theory for perturbation of −Δ, Rocky Mountain J. Math., 1, 89-125 (1971) · Zbl 0254.47017 [6] Shenk, N.; Thoe, D., Resonant states and poles of the scattering matrix for perturbations of −Δ, J. Math. Anal. Appl., 37, 467-491 (1972) · Zbl 0229.35072 [7] Simon, B., Quadratic form techniques and the Balslev-Combes theorem, Comm. Math. Phys., 27, 1-9 (1972) · Zbl 0237.35025 [8] Simon, B., Resonances in \(N\)-body quantum systems with dilation-analytic potentials and the foundations of time-dependent perturbation theory, Ann. Math., 97, 247-272 (1973) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.