×

zbMATH — the first resource for mathematics

On the Morse index in variational calculus. (English) Zbl 0361.49026

MSC:
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
PDF BibTeX Cite
Full Text: DOI
References:
[1] Arnol’d, V.I, On a characteristic class entering in quantization conditions, Funct. anal. appl., 1, 1-13, (1967) · Zbl 0175.20303
[2] Artin, E, Geometric algebra, (1957), Interscience New York · Zbl 0077.02101
[3] Bott, R, On the iteration of closed geodesics and the Sturm intersection theory, Comm. pure appl. math., 9, 176-206, (1956) · Zbl 0074.17202
[4] Carathéodory, C, Variationsrechnung und partielle differentialgleichungen erster ordnung, (1935), Teubner Berlin · JFM 61.0547.01
[5] Colin de Verdière, Y, Spectre du laplacien et longueurs des géodésiques prériodiques II, Comp. math., 27, 159-184, (1973) · Zbl 0281.53036
[6] Cushman, R; Duistermaat, J.J, The behaviour of the index of a periodic linear Hamilton system under iteration, Inv. math., 29, 39-79, (1975)
[7] Duistermaat, J.J, Fourier integral operators, Courant institute lecture notes, (1973), New York · Zbl 0272.47028
[8] {\scJ. J. Duistermaat and V. W. Guillemin}, The spectrum of positive elliptic operators and periodic geodesics, to appear. · Zbl 0322.35071
[9] Flaschel, P; Klingenberg, W, Riemannsche hilbertmannigfaltigkeiten, periodische geodätische, () · Zbl 0238.58009
[10] Hörmander, L, Fourier integral operators I, Acta math., 127, 79-183, (1971) · Zbl 0212.46601
[11] Klingenberg, W, Der indexsatz für geschlossene geodätische, Math. Z., 139, 231-256, (1974) · Zbl 0306.58009
[12] Morse, M, The calculus of variations in the large, () · JFM 58.0537.01
[13] Edwards, H.M, A generalized Sturm theorem, Ann. math., 80, 22-57, (1964) · Zbl 0127.03805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.