Parametrisierung von Konjugationsklassen in \(\mathfrak {sl}_n\). (German) Zbl 0362.17005


17B20 Simple, semisimple, reductive (super)algebras
17B05 Structure theory for Lie algebras and superalgebras
Full Text: DOI EuDML


[1] Borho, W.: Definition einer Dixmier-Abbildung für \(\mathfrak{s}\mathfrak{l}(n, \mathbb{C})\) ). Invent. math.40, 143-169 (1977) · Zbl 0346.17014
[2] Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Preprint Bonn 1976 · Zbl 0395.14013
[3] Bourbaki, N.: Groupes et algèbres de Lie, Chapters 4, 5 et 6. Paris: Hermann 1968 · Zbl 0186.33001
[4] Dixmier, J.: Polarisation dans les algèbres de Lie semi-simples complexes. Bull. Sci. Math.99, 45-63 (1975) · Zbl 0314.17009
[5] Humphreys, J.E.: Linear algebraic groups. Berlin, Heidelberg, New York: Springer 1975 · Zbl 0325.20039
[6] Mumford, D.: Geometric invariant theory. Ergebnisse der Mathematik 34. Berlin, Heidelberg, New York: Springer 1965 · Zbl 0147.39304
[7] Ozeki, H., Wakimoto, M.: On polarisations of certain homogeneous spaces. Hiroshima Math. J.2, 445-482 (1972) · Zbl 0267.22011
[8] Richardson, R. W., Johnston, D.S.: Conjugacy classes in parabolic subgroups of semisimple algebraic groups. II. Preprint · Zbl 0375.22008
[9] Steinberg, R.: Conjugacy classes in algebraic groups. Lecture Notes in Mathematics 366. Berlin, Heidelberg, New York: Springer 1974 · Zbl 0281.20037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.