Pandey, J. N.; Pathak, R. S. Eigenfunction expansion of generalized functions. (English) Zbl 0362.34018 Nagoya Math. J. 72, 1-25 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 3 Documents MSC: 34L99 Ordinary differential operators 41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.) PDF BibTeX XML Cite \textit{J. N. Pandey} and \textit{R. S. Pathak}, Nagoya Math. J. 72, 1--25 (1978; Zbl 0362.34018) Full Text: DOI OpenURL References: [1] DOI: 10.1090/S0002-9947-1965-0187083-5 [2] Kgl. Tekn. Hogsk. Mandl. Stockholm (1961) [3] DOI: 10.1098/rspa.1955.0042 · Zbl 0064.11501 [4] The use of integral transforms (1972) [5] Theore des Distributions I (1957) [6] Ordinary differential equations (1926) [7] Linear differential operators part II (1968) [8] Proc. London Math. Soc 14 pp 45– (1964) [9] Fourier analysis and generalized functions (1958) [10] Generalized functions 1 (1964) [11] Kon. Ned. Akad. Wetensch. Proc. Ser. A 58 pp 368– (1955) [12] DOI: 10.1093/qmath/5.1.120 · Zbl 0059.10301 [13] DOI: 10.1090/S0002-9947-1959-0104975-0 [14] Higher Transcendental functions 11 (1953) · Zbl 0051.30303 [15] Tables of higher functions (1960) [16] DOI: 10.2140/pjm.1976.62.365 · Zbl 0329.46044 [17] Fourier series and boundary value problems (1963) [18] An de Acad. Brasileira de Ciências 31 pp 333– (1959) [19] Les fonctions généralisées ou distributions (1964) [20] Generalized integral transformations (1968) [21] DOI: 10.1016/0022-247X(66)90026-6 · Zbl 0138.37804 [22] Lectures on differential and integral equations (1960) [23] DOI: 10.1137/0117082 · Zbl 0184.33803 [24] Eigenfunction expansions associated with second order differential equations 1 (1946) · Zbl 0061.13505 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.