zbMATH — the first resource for mathematics

General relativity and conjugate ordinary differential equations. (English) Zbl 0362.34023

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A30 Linear ordinary differential equations and systems
Full Text: DOI
[1] Hawking, S. W.; Ellis, G. F. R: The large scale structure of spacetime. (1973) · Zbl 0265.53054
[2] Misner, Charles W.; Thorne, Kip S.; Wheeler, John A.: Gravitation. (1973) · Zbl 1375.83002
[3] Tipler, Frank J.: Singularities in universes with negative cosmological constant. Astrophys. J. 209, 12-15 (1976)
[4] Tipler, Frank J.: Causality violation in general relativity. Dissertation (1976)
[5] Hawking, S. W.; Penrose, Roger: The singularities of gravitational collapse and cosmology. Proc. roy. Soc. London ser. A 314, 529-548 (1970) · Zbl 0954.83012
[6] Epstein, H.; Glaser, V.; Jaffe, A.: Nonpositivity of the energy density in quantized field theories. Nuovo cimento 36, 1016-1022 (1965)
[7] Leighton, Walter: On self-adjoint differential equations of second order. J. London math. Soc. 27, 37-47 (1952) · Zbl 0048.06503
[8] Hille, Einar: Lectures on ordinary differential equations. (1969) · Zbl 0179.40301
[9] Leighton, Walter: Principal quadratic functionals. Trans. amer. Math. soc. 67, 253-274 (1949) · Zbl 0041.22404
[10] Tipler, Frank J.: Causality violation and singularities. Ann. physics 108, 1-36 (1977) · Zbl 0369.53057
[11] Jr., James W. York: Role of conformai three-geometry in the dynamics of gravitation. Phys. rev. Lett. 28, 1082-1085 (1972)
[12] Choquet-Bruhat, Yvonne: Sous-variétés maximales, ou à courbure constante, de variétés lorentziennes. CR acad. Sci. Paris, ser. A 280, 169-171 (1975) · Zbl 0296.53043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.