Khurana, Surjit Singh Topologies on spaces of vector-valued continuous functions. II. (English) Zbl 0362.46035 Math. Ann. 234, 159-166 (1978). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 10 Documents MSC: 46G10 Vector-valued measures and integration 46E40 Spaces of vector- and operator-valued functions 46A03 General theory of locally convex spaces 28B05 Vector-valued set functions, measures and integrals 54C35 Function spaces in general topology 60B05 Probability measures on topological spaces × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Dixmier, J.: Sur certain espaces consid?r?s par M. H. Stone. Summa Brasil Math.2, 151-182 (1951) · Zbl 0045.38002 [2] Fremlin, D. H., Garling, D. J. H., Haydon, R. G.: Bounded measures on topological spaces. Proc. London Math. Soc.25, 115-136 (1972) · Zbl 0236.46025 · doi:10.1112/plms/s3-25.1.115 [3] Garling, D. J. H.: A generalized form of inductive limit topology for vector spaces. Proc. London Math. Soc.14, 1-28 (1964) · Zbl 0163.36201 · doi:10.1112/plms/s3-14.1.1 [4] Hewitt, E.: The ranges of certain convolution operators. Math. Scand.15, 147-155 (1964) · Zbl 0135.36002 [5] Katsaras, H. K.: Locally convex topologies on spaces of continuous vector functions. Math. Nachr.71, 211-216 (1976) · doi:10.1002/mana.19760710117 [6] Katsaras, H. K.: Spaces of vector measures. Trans. Amer. Math. Soc.206, 313-328 (1975) · Zbl 0275.46029 · doi:10.1090/S0002-9947-1975-0365111-8 [7] Khurana, S. S.: Strict topology on paracompact locally compact spaces. Canad. J. Math.29, 216-219 (1977) · Zbl 0335.46007 · doi:10.4153/CJM-1977-021-8 [8] Khurana, S. S.: Topologies on spaces of vector-valued continuous functions. Trans. Amer. Math. Soc. (to appear) · Zbl 0362.46035 [9] Mosiman, S. E., Wheeler, R. F.: The strict topology in a completely regular setting: relations to topological measure theory. Canad. J. Math.24, 873-890 (1972) · Zbl 0219.46003 · doi:10.4153/CJM-1972-087-2 [10] Rosenthal, H. P.: On relatively disjoint family of measures with some application to Banach space theory. Studia Math.37, 13-36 (1970) · Zbl 0227.46027 [11] Schaefer, H. H.: Topological vector spaces. New York: Macmillan 1966 · Zbl 0141.30503 [12] Wheeler, R. F.: Well-behaved and totally bounded approximate identities forC 0(X). Pacific J. Math.65, 261-270 (1976) · Zbl 0288.46049 [13] Khurana, S. S., Choo, S. A.: Strict topology andP-spaces. Proc. Amer. Math. Soc.61, 280-284 (1976) · Zbl 0322.46052 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.