×

zbMATH — the first resource for mathematics

Separabilities of a Gaussian Radon measure. (English) Zbl 0362.60015

MSC:
60B05 Probability measures on topological spaces
60G15 Gaussian processes
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Badrikian and S. Chevet , Mesures cylindriques, espaces de Wiener et fonctions aléatoires gaussiennes . Lecture notes in mathematics , Vol. 379 , Springer-Verlag , Berlin , 1974 . MR 420760 | Zbl 0288.60009 · Zbl 0288.60009
[2] R.M. Dudley , The sizes of compact subsets of Hilbert space and continuity of Gaussian processes . J. of Func. Anal. , Vol. 1 , 1967 , p. 290 - 330 . MR 220340 | Zbl 0188.20502 · Zbl 0188.20502
[3] R.M. Dudley , J. Feldman and L. Lecam , On semi-norms and probabilities, and abstract Wiener measures . Ann. of Math. , Vol. 93 , 1971 , p. 390 - 408 . MR 279272 | Zbl 0193.44603 · Zbl 0193.44603
[4] J. Kuelbs , Some results for probability measures on linear topological vector spaces with an application to Strassen’s loglog law . J. of Func. Anal. , Vol. 14 , 1973 , p. 28 - 43 . MR 356157 | Zbl 0292.60007 · Zbl 0292.60007
[5] J. Neveu , Martingales à temps discret . Masson et Cie , Paris , 1972 . MR 402914
[6] Ju.A. Rozanov , Infinite-dimensional Gaussian distributions . Proc. Steklov Inst. Math. , Vol. 108 , 1968 , A. M. S. ( English translation ). MR 298752 | Zbl 0245.60036 · Zbl 0245.60036
[7] H. Sato , Gaussian measures on a Banach space and abstract Wiener measure . Nagoya Math. J. , Vol. 36 , 1969 , p. 65 - 81 . Article | MR 249565 | Zbl 0185.44303 · Zbl 0185.44303
[8] H.H. Schaefer , Topological vector spaces . MacMillan , New York , 1966 . MR 193469 | Zbl 0141.30503 · Zbl 0141.30503
[9] L. Schwartz , Radon measures on arbitrary topological vector spaces (to appear) . · Zbl 0298.28001
[10] N.N. Vakhania , On some questions of the theory of probability measures on Banach spaces . Lecture note of Nagoya University , 1973 . · Zbl 0275.60011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.