×

zbMATH — the first resource for mathematics

The defect correction principle and discretization methods. (English) Zbl 0362.65052

MSC:
65J05 General theory of numerical analysis in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Zadunaisky, P.E.: A method for the estimation of errors propagated in the numerical solution of a system of ordinary differential equations. In: Proc. Astron. Union, Symposium No. 25. New York: Academic Press 1966 · Zbl 0196.48501
[2] Zadunaisky, P.E.: On the accuracy in the numerical computation of orbits. In: Periodic orbits, stability and resonances (G.E.O. Giacaglia, ed.), pp. 216-227. Dordrecht: Reidel 1972
[3] Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations. Numer. Math.27, 21-39 (1976) · Zbl 0324.65035
[4] Stetter, H.J.: Economical global error estimation. In: Stiff differential systems (R.A. Willoughby, ed.), pp. 245-258. New York-London: Plenum Press 1974
[5] Stetter, H.J.: Analysis of discretization methods for ordinary differential equations. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0276.65001
[6] Frank, R.: Schätzungen des globalen Diskretisierungsfehlers bei Runge-Kutta-Methoden, ISNM Vol. 27, pp. 45-70. Basel-Stuttgart: Birkhäuser 1975 · Zbl 0319.65049
[7] Frank, R.: The method of iterated defect-correction and its application to two-point boundary value problems. Part I: Numer. Math.25, 409-419 (1976); Part II: Numer. Math.27, 407-420 (1977) · Zbl 0346.65034
[8] Frank, R., Ueberhuber, C.W.: Iterated defect correction for Runge-Kutta methods. Report No. 14/75, Inst. f. Numer. Math., Technical University of Vienna, 22 pp., 1975
[9] Frank, R., Ueberhuber, C.W.: Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations. Nordisk Tidskr. Informationsbehandling (BIT)17, 146-159 (1977) · Zbl 0364.65053
[10] Frank, R., Hertling, J., Ueberhuber, C.W.: Iterated defect correction based on estimates of the local discretization error. Report No. 18/76, Inst. f. Numer. Math., Technical University of Vienna, 21 pp., 1976
[11] Frank, R., Ueberhuber, C.W.: Collocation and iterated defect correction. In: Numerical treatment of differential equations (R. Bulirsch, R.D. Grigorieff, J. Schröder, eds.), pp. 19-34. Lecture notes in Mathematics Vol. 631. Berlin-Heidelberg-New York: Springer 1978
[12] Frank, R., Hertling, J., Ueberhuber, C.W.: An extension of the applicability of iterated deferred corrections. Report No. 23/76, Inst. f. Numer. Math., Technical University of Vienna, 20 pp., 1976 (to appear in Math. Comput.). · Zbl 0379.65003
[13] Fox, L.: The numerical solution of two-point boundary value problems in ordinary differential equations. Oxford: University Press 1957 · Zbl 0077.11202
[14] Pereyra, V.L.: On improving an approximate solution of a functional equation by deferred corrections. Numer. Math.8, 376-391 (1966) · Zbl 0173.18103
[15] Pereyra, V.L.: Iterated deferred corrections for nonlinear operator equations. Numer. Math.10, 316-323 (1967) · Zbl 0258.65059
[16] Lindberg, B.: Error estimation and iterative improvement for the numerical solution of operator equations. Report UIUCDCS-R-76-820, Dept. of Computer Science, Univ. of Ill., Urbana, 1976
[17] Daniel, J.W., Martin, A.J.: Implementing deferred corrections for Numeroy’s difference method for second-order two-point boundary-value problems. Report CNA-107, Center for Numerical Analysis, Univ. of Texas, Austin, 1975
[18] Lentini, M., Pereyra, V.L.: Boundary problem solvers for first order systems based on deferred corrections. In: Numerical solutions of boundary value problems for ordinary differential equations, (A.K. Aziz, ed.), New York: Academic Press 1975 · Zbl 0321.65049
[19] Pereyra, V.L.: Iterated deferred corrections for nonlinear boundary value problems. Numer. Math.11, 111-125 (1968) · Zbl 0176.15003
[20] Stetter, H.J.: Global error estimation in Adams PC-codes. TOMS (to appear) · Zbl 0447.65040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.