Note sur l’algèbre des fonctions. (French) Zbl 0362.68058


68N01 General topics in the theory of software
68W99 Algorithms in computer science
68Q25 Analysis of algorithms and problem complexity
Full Text: EuDML


[1] J. ARSAC, Les langages sans étiquettes. Publication 73/13. Institut de Programmation. Université de Paris VI. · Zbl 0291.68030
[2] C. BOHM et G. JACOPINI, Flow diagrams, Turing machines and languages with only two formation rules, Comm. ACM, may 1966, vol. 9, n^\circ 5, 366-371. Zbl0145.24204 · Zbl 0145.24204
[3] J. CADIOU, Recursive definitions of partial functions and their conditions. Ph D, thesis. Computer Science department, Stanford University. June 1972.
[4] S. C. KLEENE, Introduction to Metamathematics (the récursion theorem, p. 348). Van Nostrand, 1952. Zbl0047.00703 · Zbl 0047.00703
[5] J. KOTT, Remarques sur la structure des schémas de programme, in Théorie des automates, des langages et de la programmation, Colloques IRIA, 1972, pp. 191-194. Zbl0262.68005 · Zbl 0262.68005
[6] A. L. MALCEV, Algorithms and recursive functions, Wolters-Noardhoff Publishing Corp. Netherlands, 1970. Zbl0198.02501 · Zbl 0198.02501
[7] H. D. MILLS, The new Math of Computer Programming. Com. ACM, January 1975, vol. 18, n^\circ 1, pp. 43-48. Zbl0293.68013 · Zbl 0293.68013
[8] R. E. PRATHER, A convenient Cryptomorphic Version of Recursive Function Theory in Information and Control, vol. 27, n^\circ 2, February 1975, pp. 178-195. Zbl0306.02031 · Zbl 0306.02031
[9] F. H. RAYMOND, Tentative de formalisation en informatique, in Structure et programmation des calculateurs, Séminaires IRIA, 1972, pp. 201-248.
[10] Et : Formalisation du concept de calcul. Publications 25 et 32, 1972-1973, Institut de Programmation, Université Paris VI.
[11] F. H. RAYMONDAlgèbre des fonctions. Cours du CNAM. Éditions Scientifiques Riber, Paris, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.