×

zbMATH — the first resource for mathematics

Algebraic theory of discrete optimal control for multivariable systems. (English) Zbl 0363.49004
Kybernetika, Praha 10, Suppl., 1-56 (1974); 11, Suppl., 57-220 (1975); 12, Suppl., 221-240 (1976).
MSC:
49J99 Existence theories in calculus of variations and optimal control
93B25 Algebraic methods
Full Text: EuDML
References:
[1] Ackermann J.: Abtastregelung. Springer, Berlin 1972. · Zbl 0254.93026
[2] Åström K. J.: Introduction to Stochastic Control Theory. Academic Press, New York 1970.
[3] Åström K. J., Jury E. J., Agniel R. G.: A numerical method for the evaluation of complex integrals. IEEE Trans. Automatic Control AC-15 (1970), 4, 468-471.
[4] Barnet S.: Matrices, polynomials, and linear time-invariant systems. IEEE Trans. Automatic Control AC-18 (1973), 1, 1-10.
[5] Bourbaki N.: Algèbre, Chapter 5. Hermann & Cie, Paris 1956.
[6] Bourbaki N.: Algèbre, Chapter 8. Hermann & Cie, Paris 1966.
[7] Bourbaki N.: Algèbre Commutative. Hermann & Cie, Paris 1961. · Zbl 0119.03603
[8] Brockett R. W.: Finite Dimensional Linear Systems. Wiley, New York 1970. · Zbl 0216.27401
[9] Chang S. S. L.: Synthesis of Optimum Control Systems. McGraw-Hill, New York 1961.
[10] Chen C. T.: Representation of linear time-invariant composite systems. IEEE Trans. Automatic Control AC-13 (1968), 3, 277-283.
[11] Davison E. J.: On pole assignment in linear systems with incomplete state feedback. IEEE Trans. Automatic Control AC-16 (1970), 3, 348-350.
[12] Гантмахєр Ф. Р.: Тєория матриц. Гостєхиздат, Москва 1953.
[13] Hardy G. H., Wright E. M.: An Introduction to the Theory of Numbers. Clarendon Press, Oxford 1960. · Zbl 0086.25803
[14] Heymann M.: Comment on pole assignment in multi-input linear systems. IEEE Trans. Automatic Control AC-13 (1968), 6, 748-749.
[15] Янушєвский Р. Т.: Тєория линєйных многосвязных систєм управлєния. Hayka, Москва 1973.
[16] Johnson C. D.: Stabilization of linear dynamical systems with output feedback. Proc. 5th IFAC Congress, Paris 1972.
[17] Kalman R. E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 (1960), 102-119. · Zbl 0112.06303
[18] Kalman R. E.: On the general theory of control systems. Proc. 1st IFAC Congress, Moscow 1960. · Zbl 0112.06303
[19] Kalman R. E.: Mathematical description of linear dynamical systems. SIAM J. Control 1 (1963), 152-192. · Zbl 0145.34301
[20] Kalman R. E.: Irreducible realizations and the degree of a rational matrix. SIAM J. Control 13 (1965), 2, 520-544. · Zbl 0161.06704
[21] Kalman R. E.: Algebraic theory of linear systems. Proc. 3rd Allerton Conference on Circuit and System Theory, Illinois 1965, 563-577.
[22] Kalman R. E.: Lectures on Controllability and Observability. Centro Internazionale Matematico Estivo 1968. · Zbl 0208.17201
[23] Kalman R. E., Falb P. L., Arbib M. A.: Topics in Mathematical System Theory. McGraw-Hill, New York 1969. · Zbl 0231.49001
[24] Kalman R. E., Bertram J. E.: A unified approach to the theory of samplingsystems. Journal of the Franklin Institute 267 (1959), 5, 405-436. · Zbl 0142.07004
[25] Kučera V.: The discrete Riccati equation of optimal control. Kybernetika 8 (1972), 5, 430-447.
[26] Kučera V.: A contribution to matrix quadratic equations. IEEE Trans. Automatic Control AC-17 (1972), 3, 344-347.
[27] Kučera V.: On nonnegative definite solutions of matrix quadratic equations. Proc. 5th IFAC Congress, Paris 1972.
[28] Kučera V.: On nonegative definite solutions of matrix quadratic equations. Automatica 8 (1972), 4, 413-423.
[29] Kučera V.: A review of the matrix Riccati equation. Kybernetika 9 (1973), 1, 42-61.
[30] Kučera V.: Algebraic theory of discrete optimal control for single-variable systems I - Preliminaries. Kybernatika 9 (1973), 2, 94-107. · Zbl 0254.49002
[31] Kučera V.: Algebraic theory of discrete optimal control for single-variable systems II - Open-loop control. Kybernatika 9 (1973), 3, 206-221.
[32] Kučera V.: Algebraic theory of discrete optimal control for single-variable systems III - Closed-loop control. Kybernetika 9 (1973), 4, 291-312.
[33] Kučera V.: Closed-loop stability of discrete linear single-variable systems. Kybernetika 10 (1974), 2, 162-187.
[34] Kučera V.: Constrained optimal control - The algebraic approach. Kybernetika 10 (1974), 4, 317-349.
[35] Kučera V.: Algebraic approach to discrete optimal control. To appear in IEEE Trans. Automatic Control. · Zbl 0556.93074
[36] Kučera V.: On the minimal order inverses for linear time-invariant discrete systems. Proc. Joint Automatic Control Conference, St. Louis 1971, 312-318.
[37] Kučera V.: The pole assignment in linear systems. Proc. International Conference on Systems and Control, Coimbatore, India, 1973.
[38] Kuroš A. G.: Kapitoly z obecné algebry. Academia, Prague 1968.
[39] Lambek J.: Lectures on Rings and Modules. Blaisdell, Waltham, Mass. 1966. · Zbl 0143.26403
[40] Lang S.: Algebra. Addison-Wesley, Reading, Mass. 1965. · Zbl 0193.34701
[41] MacLane S., Birghoff G.: Algebra. Macmillan, New York 1967.
[42] Михелович Ш. Х.: Теория чисел. Высшая скола, Москва 1967. · Zbl 1103.35360
[43] Mitter S. K., Foulkes R.: Controllability and pole assignment for discrete-time linear systems defined over arbitrary fields. SIAM J. Control 9 (1971), 1, 1-8. · Zbl 0221.93001
[44] Mordell L. J.: Diophantine Equations. Academic Press, London 1969. · Zbl 0188.34503
[45] Morse A. S., Wonham W. M.: Decoupling and pole assignment by dynamic compensation. SIAM J. Control 8 (1970), 3, 317-337. · Zbl 0204.46401
[46] Nekolný J.: Numerická interpolace a náhrada analytických funkcí. Report No. 357, ÚTIA ČSAV, Prague 1971.
[47] Peterka V., Halousková A.: Tally estimate of Åström model for stochastic systems. Identification and Process Parameter Estimation, 2nd Prague IFAC Symposium, 1970.
[48] Peterka V.: On steady-state minimum variance control strategy. Kybernetika 8 (1972), 3, 219-232. · Zbl 0256.93070
[49] Rosenbrock H. H.: State Space and Multivariate Theory. Wiley, New York 1970. · Zbl 0246.93010
[50] Roth W. E.: The equations \(AX - YB = C\) and \(AX- XB = C\) in matrices. Proc. Amer. Math. Soc. 3 (1952), 390-396. · Zbl 0047.01901
[51] Sage A. P.: Optimum Systems Control. Prentice-Hall, Englewood Cliffs, N. J. 1968. · Zbl 0192.51502
[52] Sain M. K., Massey J. L.: Invertibility of linear time-invariant systems. IEEE Trans. Automatic Control AC-14 (1969), 2, 141-149.
[53] Silverman L. M.: Inversion of multivariable linear systems. IEEE Trans. Automatic Control AC-14 (1969), 3, 270-276.
[54] Silverman L. M., Payne H. J.: Input-output structure of linear systems with application to the decoupling problem. SIAM J. Control 9 (1971), 2, 199-233. · Zbl 0242.93030
[55] Strejc V., al.: Syntéza regulačních obvodů s číslicovým počítačem. NČSAV, Prague 1965.
[56] Tou J. T.: Digital and Sampled-data Control Systems. McGraw-Hill, New York 1959. · Zbl 0123.33504
[57] van der Waerden B. L.: Moderne Algebra, vol. I. Springer, Berlin 1930. · JFM 56.0138.01
[58] Vostrý Z.: Нумерический метод спектральной факторизации полиномов. Kybernetika 8 (1972), 4, 323-332.
[59] Vostrý Z.: A numerical method of matrix spectral factorization. Kybernetika 8 (1972), 5, 448-470.
[60] Vostrý Z.: Syntéza lineárního diskrétního řízení podle kvadratického kritéria pro soustavy s nestejným počtem vstupů a výstupů. C.Sc. Thesis, ÚTIA ČSAV, Prague 1973.
[61] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable systems. IEEE Trans. Automatic Control AC-18 (1973), 3, 220-225. · Zbl 0261.93010
[62] Wonham W. M.: On pole assignment in multi-input controllable linear systems. IEEE Trans. Automatic Control AC-12 (1967), 6, 660-665.
[63] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems - A geometric approach. SIAM J. Control 8 (1970), 1, 1-18. · Zbl 0206.16404
[64] Youla D. C.: On the factorization of rational matrices. IRE Trans. Information Theory IT-17 (1961), 3, 172-189.
[65] Zadeh L. A., Desoer C. A.: Linear Systems Theory - The State Space Approach. McGraw-Hill, New York 1963. · Zbl 1145.93303
[66] Zariski O., Samuel P.: Commutative Algebra, vols. I and II. Van Nostrand, Princeton, N.J. 1958. · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.