×

zbMATH — the first resource for mathematics

Finite translation planes, an exposition. (English) Zbl 0363.50012

MSC:
51E20 Combinatorial structures in finite projective spaces
51-02 Research exposition (monographs, survey articles) pertaining to geometry
51N10 Affine analytic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Albert, A. A. andSandler, R.,An introduction to finite projective planes. Holt, Rinehart and Winston, New York (1968).
[2] André, J.,Über Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z.60 (1954), 156–186. · Zbl 0056.38503
[3] André, J.,Projektive Ebenen über Fastkörpern. Math. Z.62 (1955), 137–160. · Zbl 0064.14402
[4] Baer, R.,Homogeneity of projective planes. Amer. J. Math.64 (1942), 137–152. · Zbl 0060.32207
[5] Bruck, R. H.,Recent advances in the foundations of Euclidean plane geometry. Slaught Memorial Paper No. 4 (Contributions to geometry), Amer. Math. Monthly62 (1955), 2–17. · Zbl 0066.13804
[6] Bruck, R. H.,Construction problems of finite projective planes. Chapter 27 of Combinatorial Mathematics and its Applications, edited by R. C. Bose and T. A. Dowling, University of North Carolina Press, Chapel Hill (1967).
[7] Bruck, R. H. andBose, R. C.,The construction of translation planes from projective spaces. J. Algebra1 (1964), 85–102. · Zbl 0117.37402
[8] Dembowski, Peter,Finite Geometries. Springer-Verlag, Berlin and New York (1968).
[9] Foulser, D. A.,A generalization of André’s systems. Math. Z.100 (1967), 380–395. · Zbl 0152.18903
[10] Foulser, D. A.,Replaceable translation nets. Proc. London Math. Soc.22 (1971), 235–264. · Zbl 0212.52303
[11] Hall, Marshall Jr.,Theory of Groups. Macmillan Co., New York (1959). · Zbl 0084.02202
[12] Hering, C.,On shears of translation planes. Abh. Math. Sem. Univ. Hamburg37 (1972), 258–268. · Zbl 0236.50008
[13] Hughes, D. R. andPiper, F. C.,Projective Planes. Springer-Verlag, Berlin and New York (1973).
[14] Jha, V.,On the automorphism groups of quasi-fields. Thesis, Westfield College, University of London (1972).
[15] Johnson, N. L. andOstrom, T. G.,Tangentially transitive planes of order 16. (to appear).
[16] Kallaher, M. J.,On finite affine planes of rank 3. J. Algebra13 (1969), 544–553. · Zbl 0201.53301
[17] Kallaher, M. J.,A survey of weak rank 3 affine planes. Proc. Int. Conf. on Proj. Planes, Washington State University Press, Pullman, WA. (1973), 121–143. · Zbl 0275.50011
[18] Liebler, R. A.,Finite affine planes of rank 3 are translation planes. Math. Z.116 (1970), 89–93. · Zbl 0197.16802
[19] Liebler, R. A.,On finite line transitive affine planes of rank 3. Proc. Int. Conf. on Proj. Planes, Washington State University Press, Pullman, WA. (1973), 165–179. · Zbl 0272.50021
[20] Lorimer, P.,A projective plane of order 16. J. Combinatorial Theory Ser. A16 (1974), 334–347. · Zbl 0283.50017
[21] Lüneburg, H.,Über projektive Ebenen in denen jede Fahne von einer nicht trivialen Elation invariant gelassen wird. Abh. Math. Sem. Univ. Hamburg29 (1965), 37–76. · Zbl 0147.19704
[22] Lüneburg, H.,Die Suzukigruppen und ihre Geometrien. Lecture Notes in Mathematics No. 10, Springer-Verlag, Berlin and New York (1965). · Zbl 0136.01502
[23] Lüneburg, H.,Über eine Klasse von endlichen affinen Ebenen des Ranges 3. Atti del Colloquio Int. sulle Teorie Comb., Rome (1973).
[24] LÜneburg, H.,Über einige menkwündige Translationsebenen. Geom. Ded.3 (1974), 263–288. · Zbl 0308.50017
[25] Ostrom, T. G.,Semi-translation planes. Trans. Amer. Math. Soc.111 (1964), 1–18. · Zbl 0117.37303
[26] Ostrom, T. G.,Vector spaces and construction of finite projective planes. Arch. Math.19 (1968), 1–25. · Zbl 0153.49801
[27] Ostrom, T. G.,Translation planes admitting homologies of large order. Math. Z.114 (1970), 79–92. · Zbl 0184.46202
[28] Ostrom, T. G.,Finite translation planes. Lecture Notes in Math. No. 158, Springer-Verlag, Berlin and New York (1970). · Zbl 0205.49901
[29] Ostrom, T. G.,A class of translation planes admitting elations which are not translations. Arch. Math.21 (1970), 214–217. · Zbl 0193.21303
[30] Ostrom, T. G.,Homologies in translation planes. Proc. London Math. Soc. 3rd Series26 (1973), 605–629. · Zbl 0257.50009
[31] Ostrom, T. G.,Classification of finite translation planes. Proc. Int. Conf. on Proj. Planes, Washington State University Press, Pullman, WA. (1973), 195–213. · Zbl 0271.50020
[32] Ostrom, T. G.,Elations in finite translation planes of characteristic 3. Abh. Math. Sem. Univ. Hamburg41 (1974), 179–184. · Zbl 0284.50007
[33] Pickert, Günter,Projektive Ebenen. Springer-Verlag, Berlin and New York (1955).
[34] Rahilly, A. J.,Finite generalized Hall planes and their collineation groups. Thesis, University of Sydney (1973). · Zbl 0268.50011
[35] Rao, M. L. N.,A class of flag transitive planes. Proc. Amer. Math. Soc.39 (1973), 51–56. · Zbl 0271.50019
[36] Rao, M. L. N., Rodabough, S. J., Wilke, F. W. andZemmer, J. L.,A new class of finite translation planes obtained from exceptional nearfields. J. Combinatorial Theory Ser. A11 (1971), 72–92. · Zbl 0211.53201
[37] Walker, M.,On translation planes and their collineation groups. Thesis, Westfield College, University of London (1973).
[38] Wilke, F. W.,Some new translation nets. Geom. Ded.2 (1973), 205–211. · Zbl 0279.50017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.