×

zbMATH — the first resource for mathematics

A note on percolation. (English) Zbl 0363.60120

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frisch, H.L., Hammersley, J.M.: J. Soc. Industr. Appl. Math. 11, 894 (1963) · Zbl 0129.46002
[2] Shante, V.K.S., Kirkpatrick, S.: Advances Phys. 20, 325 (1971)
[3] Essam, J.W.: In Phase Transitions and Critical Phenomena, eds. C. Domb and M.S. Green. New York: Academic Press 1973
[4] Coniglio, A., Nappi, C.R., Peruggi, F., Russo, L.: J. Physics A, II. Ser. Math. Gen., 10, 205 (1977)
[5] Lebowitz, J., Penrose, O.: Cluster and percolation inequalities for lattice systems with interactions (preprint)
[6] Harris, T.E.: Proc. Cambridge Philos. Soc. 56, 13 (1960)
[7] Fisher, M.E.: J. Mathematical Phys. 2, 620 (1961) · Zbl 0105.43602
[8] Sykes, M.F, Essam, J.W.: J. Mathematical Phys. 5, 1117 (1964)
[9] Miyamoto, M.: Comm. Math. Phys. 44, 169 (1975)
[10] Coniglio, A., Nappi, C.R., Peruggi, F., Russo, L.: Comm. Math. Phys. 51, 315 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.