×

zbMATH — the first resource for mathematics

A Ritz method based on a complementary variational principle. (English) Zbl 0363.65084

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
49S05 Variational principles of physics
PDF BibTeX Cite
Full Text: EuDML
References:
[1] 1. A. M. ARTHURS, Complementary Variational Principles, , Clarendon Press, Oxford, 1970. Zbl0202.38404 MR594935 · Zbl 0202.38404
[2] 2. I. BABUSKA, Approximation by Hill Functions, Commentations Math. Univ. Carolinae, Vol. 11, 1970, p. 387-811. Zbl0215.46404 MR292309 · Zbl 0215.46404
[3] 3. I. BABUSKA, Approximation by Hill Functions, II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.
[4] 4. I. BABUSKA, The Finite Element Method with Lagrangian Multipliers, Numer. Math. 20, 1973, p. 179-192. Zbl0258.65108 MR359352 · Zbl 0258.65108
[5] 5. I. BABUSKA, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. Zbl0259.00014 MR347104 · Zbl 0259.00014
[6] 6. J. L. LIONS, E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1, Paris, Dunod, 1968. Zbl0165.10801 MR247243 · Zbl 0165.10801
[7] 7. G. STRANG and G. FIX, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. Zbl0356.65096 MR443377 · Zbl 0356.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.