Gallo, Giorgio; Ülkücü, Aydin Bilinear programming: An exact algorithm. (English) Zbl 0363.90086 Math. Program. 12, 173-194 (1977). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 29 Documents MSC: 90C20 Quadratic programming PDF BibTeX XML Cite \textit{G. Gallo} and \textit{A. Ülkücü}, Math. Program. 12, 173--194 (1977; Zbl 0363.90086) Full Text: DOI OpenURL References: [1] E. Balas, ”Intersection Cuts – A new type of cutting planes for integer programming”,Operations Research 19 (1971) 19–39. · Zbl 0219.90035 [2] G. Gallo, ”On Hoang Tui’s concave programming algorithm”, Nota Scientifica S-76-1, Instituto di Scienze dell’Informazione, University of Pisa Italy (1975). [3] F. Glover, ”Convexity cuts and cut search”,Operations Research 21 (1973) 123–134. · Zbl 0263.90020 [4] B. Grünbaum,Convex polytopes (Wiley, New York, 1967). · Zbl 0163.16603 [5] H. Konno, ”Bilinear programming: Part I. Algorithm for solving bilinear programs”, Tech. Rept. No. 71-9, Stanford University, Stanford, CA (1971). [6] A. H. Land and S. Powell,Fortran codes for mathematical programming: linear, quadratic and discrete (Wiley, New York, 1973). · Zbl 0278.68036 [7] Hoang Tui, ”Concave programming under linear constraints”,Doklady Akademii Nauk SSR 159 (1964) 32–35. [English translation:Soviet Mathematics 5 (1964) 1437–1440.] · Zbl 0132.40103 [8] P. B. Zwart, ”Nonlinear programming: counterexamples to two global optimization algorithms”,Operations Research 21 (1973) 1260–1266. · Zbl 0274.90049 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.